Details

Wireless Power Transmission for Sustainable Electronics


Wireless Power Transmission for Sustainable Electronics

COST WiPE - IC1301
1. Aufl.

von: Nuno Borges Carvalho, Apostolos Georgiadis

117,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 30.01.2020
ISBN/EAN: 9781119578499
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Provides a collection of works produced by COST Action IC1301 with the goal of achieving significant advances in the field of wireless power transmission</b> </p> <p>This book constitutes together information from COST Action IC1301, a group of academic and industry experts seeking to align research efforts in the field of wireless power transmission (WPT). It begins with a discussion of backscatter as a solution for Internet of Things (IoT) devices and goes on to describe ambient backscattering sensors that use FM broadcasting for low cost and low power wireless applications. The book also explores localization of passive RFID tags and augmented tags using nonlinearities of RFID chips. It concludes with a review of methods of electromagnetic characterization of textile materials for the development of wearable antennas. </p> <p><i>Wireless Power Transmission for Sustainable Electronics: COST WiPE - IC1301</i> covers textile-supported wireless energy transfer, and reviews methods for the electromagnetic characterization of textile materials for the development of wearable antennas. It also looks at: backscatter RFID sensor systems for remote health monitoring; simultaneous localization (of robots and objects) and mapping (SLAM); autonomous system of wireless power distribution for static and moving nodes of wireless sensor networks; and more. </p> <ul> <li>Presents techniques for smart beam-forming for "on demand" wireless power transmission (WPT)</li> <li>Discusses RF and microwave energy harvesting for space applications</li> <li>Describes miniaturized RFID transponders for object identification and sensing </li> </ul> <p><i>Wireless Power Transmission for Sustainable Electronics: COST WiPE - IC1301</i> is an excellent book for both graduate students and industry engineers involved in wireless communications and power transfer, and sustainable materials for those fields.</p>
<p>List of Figures xiii</p> <p>List of Contributors xxxiii</p> <p>Preface xxxvii</p> <p>Acknowledgments xxxix</p> <p><b>1 Textile-Supported Wireless Energy Transfer 1</b><br /><i>Miroslav Cupal, Jaroslav Láčík, Zbynĕk Raida, Jan Špůrek, and Jan Vélim</i></p> <p>1.1 Introduction 1</p> <p>1.2 Textile-Coated Single-Wire Transmission Line 3</p> <p>1.3 Textile-Integrated Components 6</p> <p>1.3.1 Fabrication of the Top Conductive Layer and the Bottom One 8</p> <p>1.3.2 Fabrication of Conductive Vias of Side Walls 8</p> <p>1.4 In-Vehicle Wireless Energy Transfer 15</p> <p>1.5 Summary 24</p> <p>References 25</p> <p><b>2 A Review of Methods for the Electromagnetic Characterization of Textile Materials for the Development of Wearable Antennas 27<br /></b><i>Caroline Loss, Ricardo Gonçalves, Pedro Pinho, and Rita Salvado</i></p> <p>2.1 Introduction 27</p> <p>2.2 Electromagnetic Properties of Materials 29</p> <p>2.2.1 Conductive Fabrics 29</p> <p>2.2.2 Dielectric Fabrics 31</p> <p>2.3 Dielectric Characterization Methods Applied to Textile Materials and Leather: A Survey 32</p> <p>2.3.1 Resonant Methods 33</p> <p>2.3.1.1 Cavity Perturbation Methods 33</p> <p>2.3.1.2 Microstrip Resonator Patch Method 35</p> <p>2.3.1.3 Microstrip Resonator Ring Method 35</p> <p>2.3.1.4 Microstrip Patch Sensor 35</p> <p>2.3.1.5 Agilent 85070E Dielectric Measurement Probe Kit 39</p> <p>2.3.1.6 Summary of the Characterization of Textile Materials by Resonant Methods 40</p> <p>2.3.2 Nonresonant Methods 40</p> <p>2.3.2.1 Parallel Plate Method 40</p> <p>2.3.2.2 Free Space Methods 41</p> <p>2.3.2.3 Planar Transmission Lines Methods 44</p> <p>2.3.2.4 Summary of the Characterization of Textile Materials by Nonresonant Methods 46</p> <p>2.4 Some Factors that Affect the Measurement of Dielectric Properties of Textiles 46</p> <p>2.4.1 Influence of the Moisture Content 46</p> <p>2.4.2 Influence of the Material Anisotropy 47</p> <p>2.4.3 Influence of the Bulk Porosity 47</p> <p>2.4.4 Influence of the Surface Features 48</p> <p>2.5 Conclusions 48</p> <p>Acknowledgments 50</p> <p>References 50</p> <p><b>3 Smart Beamforming Techniques for “On Demand” WPT </b><b>57<br /></b><i>Diego Masotti, Mazen Shanawani, and Alessandra Costanzo</i></p> <p>3.1 Introduction 57</p> <p>3.2 Basics of Time-modulated Arrays 61</p> <p>3.3 Nonlinear/Full-Wave Co-simulation of TMAS 63</p> <p>3.4 Two-Step Agile WPT Strategy 64</p> <p>3.4.1 Localization Step 65</p> <p>3.4.2 Power Transfer Step 66</p> <p>3.5 Simulation Results 68</p> <p>3.5.1 Localization Step 68</p> <p>3.5.2 Power Transfer Step 69</p> <p>3.6 Measured Results 73</p> <p>3.7 TMA Architecture for Fundamental Pattern Steering 76</p> <p>3.8 Conclusion 81</p> <p>References 82</p> <p><b>4 Backscatter a Solution for IoT Devices </b><b>85<br /></b><i>Daniel Belo, Ricardo Correia, Marina Jordao, Pedro Pinho, and Nuno B. Carvalho</i></p> <p>4.1 Backscatter Basics 85</p> <p>4.1.1 Different Backscatter Sensors Development 87</p> <p>4.1.2 Backscatter with WPT Capabilities 87</p> <p>4.1.3 High-Order Backscatter Modulation 88</p> <p>4.1.4 Modulated High-Bandwidth Backscatter with WPT Capabilities 89</p> <p>4.2 An IoT-Complete Sensor with Backscatter Capabilities 90</p> <p>4.2.1 System Description 91</p> <p>4.2.2 Digital Component 92</p> <p>4.2.3 Measurements 94</p> <p>4.3 The Power Availability for These Sensors 97</p> <p>4.3.1 Electronically Steerable Phased Array for Wireless Power Transfer Applications 98</p> <p>4.3.2 Wireless Energy Receiving Device 101</p> <p>4.3.3 Experimental Results 104</p> <p>4.4 Characterization of High-Order Modulation Backscatter Systems 107</p> <p>4.4.1 Characterization System 107</p> <p>4.4.2 Measurements 110</p> <p>References 114</p> <p><b>5 Ambient FM Backscattering Low-Cost and Low-Power Wireless RFID Applications </b><b>117<br /></b><i>Spyridon N. Daskalakis, Ricardo Correia, John Kimionis, George Goussetis, Manos M. Tentzeris, Nuno B. Carvalho, and Apostolos Georgiadis</i></p> <p>5.1 Introduction 117</p> <p>5.2 Ambient Backscattering 120</p> <p>5.2.1 Ambient FM Backscattering 122</p> <p>5.2.2 Binary Modulation Tag 124</p> <p>5.2.3 4-PAM Tag 125</p> <p>5.2.4 Binary Telecommunication Protocol 127</p> <p>5.2.5 4-PAM Telecommunication Protocol 129</p> <p>5.2.6 Receiver 129</p> <p>5.2.7 Software Binary Receiver 130</p> <p>5.2.8 Software 4-PAM Receiver 132</p> <p>5.2.9 Experimental and Measurement Results 132</p> <p>5.3 Conclusions 138</p> <p>Acknowledgments 139</p> <p>References 139</p> <p><b>6 Backscatter RFID Sensor System for Remote Health Monitoring </b><b>145<br /></b><i>Jasmin Grosinger</i></p> <p>6.1 Introduction 145</p> <p>6.2 On-Body System 146</p> <p>6.2.1 Body Model 146</p> <p>6.2.2 Antennas 149</p> <p>6.2.2.1 Monopole Antennas 149</p> <p>6.2.2.2 Patch Antennas 151</p> <p>6.3 Radio Channel 152</p> <p>6.3.1 Measurement Setup 153</p> <p>6.3.2 Comparison of Simulations and Measurements 154</p> <p>6.3.3 Measurement Results 156</p> <p>6.3.3.1 Antenna Matching 156</p> <p>6.3.3.2 Channel Gain 157</p> <p>6.4 System Performance 159</p> <p>6.4.1 Forward Link 162</p> <p>6.4.1.1 System Example 165</p> <p>6.4.2 Backward Link 166</p> <p>6.4.2.1 System Example 166</p> <p>6.5 Conclusions 168</p> <p>Acknowledgments 169</p> <p>References 170</p> <p><b>7 Robotics Meets RFID for Simultaneous Localization (of Robots and Objects) and Mapping (SLAM) – A Joined Problem 175<br /></b><i>Antonis G. Dimitriou, Stavroula Siachalou, Emmanouil Tsardoulias, and Loukas Petrou</i></p> <p>7.1 Scope 175</p> <p>7.2 Introduction 176</p> <p>7.3 Localization of RFID Tags – Prior Art 182</p> <p>7.3.1 Multipath in Passive RFID Systems 184</p> <p>7.3.2 Representative Localization Techniques 185</p> <p>7.3.2.1 Angle of Arrival 185</p> <p>7.3.2.2 Received Signal Strength – Bayes’ Theorem and Conditional Probability 187</p> <p>7.3.2.3 Fingerprinting – “Landmarc” 189</p> <p>7.3.2.4 Holographic Localization 190</p> <p>7.3.2.5 Other Methods 192</p> <p>7.3.3 Analysis of Prior Art 194</p> <p>7.4 A Brief Introduction in SLAM/Localization Techniques 195</p> <p>7.4.1 Introduction to Localization, Mapping, and SLAM 196</p> <p>7.4.2 Mathematical Formulation of SLAM 197</p> <p>7.4.3 Probabilistically Solving SLAM 198</p> <p>7.4.4 Space Representation in SLAM 201</p> <p>7.4.5 SLAM Algorithm Selection 202</p> <p>7.4.5.1 What are the Robot’s Sensors? 202</p> <p>7.4.5.2 Which is the Environmental Morphology? 203</p> <p>7.4.5.3 How Will the Generated Map Be Utilized? 203</p> <p>7.4.6 SLAM/Localization and RFID Localization Issues 204</p> <p>7.5 Prototype – Experimental Results 206</p> <p>7.5.1 Equipment 206</p> <p>7.5.2 Methodology 208</p> <p>7.5.2.1 Phase 1 208</p> <p>7.5.2.2 Phase 2 209</p> <p>7.5.3 Results 212</p> <p>7.6 Discussion 216</p> <p>Acknowledgments 218</p> <p>References 218</p> <p><b>8 From Identification to Sensing: Augmented RFID Tags </b><b>223<br /></b><i>Konstantinos Zannas, Hatem El Matbouly, Yvan Duroc, and Smail Tedjini</i></p> <p>8.1 Introduction 223</p> <p>8.2 Generic RFID Communication Chain 226</p> <p>8.2.1 RFID Sensor Tag 226</p> <p>8.2.2 RFID Data Capture Level 228</p> <p>8.2.3 RFID Tag Process Level 229</p> <p>8.2.4 RFID Communication Channel 231</p> <p>8.2.5 RFID Reader Process Level and RFID Reader 232</p> <p>8.3 RFID Sensor Tags: Examples from Literature or Commercially Available 233</p> <p>8.3.1 Examples from Literature 234</p> <p>8.3.2 Examples Commercially Available 239</p> <p>8.4 Comparison of Different Types of RFID Temperature Sensors 240</p> <p>8.5 Conclusion 242</p> <p>References 243</p> <p><b>9 Autonomous System of Wireless Power Distribution for Static and Moving Nodes of Wireless Sensor Networks </b><b>247<br /></b><i>Przemyslaw Kant, Karol Dobrzyniewicz, and Jerzy Julian Michalski</i></p> <p>9.1 Introduction 247</p> <p>9.2 Data Routing in WSN Based on Multiple Spanning Trees Concept 248</p> <p>9.2.1 Multiple Spanning Trees Routing Protocol 249</p> <p>9.2.2 Software WSN Simulator 252</p> <p>9.2.3 Experimental Verification 253</p> <p>9.3 WPT System for 2D Distributed WSN 256</p> <p>9.3.1 System Concept 257</p> <p>9.3.2 Physical Realization of 2D WPT System 260</p> <p>9.3.3 Experimental Verification of the 2DWPT System 264</p> <p>9.3.4 Tests of 2D WPT System with Implemented Switching Algorithm 266</p> <p>9.4 WPT System for 3D Distributed WSN 269</p> <p>9.4.1 Design of Components of the 3D WPT System 272</p> <p>9.5 Locating System and Electromagnetic Power Supply for WSN in 3D Space 275</p> <p>9.5.1 Tracking Subsystem 276</p> <p>9.5.2 Data Exchange System 278</p> <p>9.5.3 Angular Position Estimation of Moving WSN Node 279</p> <p>9.5.4 Experimental Verification 281</p> <p>9.5.5 Adaptation of the System to WPT for WSN 282</p> <p>9.5.5.1 Tracking System 282</p> <p>9.5.5.2 WSN Node 282</p> <p>9.6 Summary 283</p> <p>References 284</p> <p><b>10 Smartphone Reception of Microwatt, Meter to Kilometer Range Backscatter Resistive/Capacitive Sensors with Ambient FM Remodulation and Selection Diversity </b><b>287<br /></b><i>Georgios Vougioukas and Aggelos Bletsas</i></p> <p>10.1 Introduction 287</p> <p>10.2 Operating Principle 291</p> <p>10.2.1 Backscatter Communication 291</p> <p>10.2.2 FM Remodulation 292</p> <p>10.3 Impact of Noise 293</p> <p>10.3.1 High SNR Case 294</p> <p>10.3.2 Low SNR Case 301</p> <p>10.4 Occupied Bandwidth 302</p> <p>10.5 Ambient Selection Diversity 303</p> <p>10.6 Analog Tag Implementation 304</p> <p>10.6.1 Sensing Capacitor and Control Circuit 305</p> <p>10.6.1.1 Generating <i>𝜇</i>(<i>t</i>) – First Modulation Level 305</p> <p>10.6.1.2 Generating <i>x</i><sub>FM</sub>(<i>t</i>) – Second Modulation Level 306</p> <p>10.6.2 RF-Switch 306</p> <p>10.6.3 Power Consumption and Supply 306</p> <p>10.6.3.1 Batteryless Tag with Photodiode 307</p> <p>10.6.3.2 Batteryless Tag with Solar Panel 307</p> <p>10.6.3.3 Batteryless Tag with Lemons 307</p> <p>10.6.4 Receiver 308</p> <p>10.6.4.1 Smartphone 308</p> <p>10.6.4.2 Computer 309</p> <p>10.7 Performance Characterization 309</p> <p>10.7.1 Simulation Results 309</p> <p>10.7.2 Tag Indoor and Outdoor Performance 312</p> <p>10.8 Conclusions 313</p> <p>10.9 Bandwidth of <i>J</i><sub>0</sub> (2<i>𝜌 </i>sin (<i>𝜔</i><sub>sens</sub>/2 <i>t</i>)) 314</p> <p>10.10 Expectation of the Absolute Value of a Gaussian R.V 316</p> <p>10.11 Probability of Outage Under Ambient Selection Diversity 316</p> <p>Acknowledgment 318</p> <p>References 318</p> <p><b>11 Design of an ULP-ULV RF-Powered CMOS Front-End for Low-Rate Autonomous Sensors </b><b>323<br /></b><i>Hugo García-Vázquez, Alexandre Quenon, Grigory Popov, and Fortunato Carlos Dualibe</i></p> <p>11.1 Introduction 323</p> <p>11.2 Characterization of the Technology 326</p> <p>11.2.1 <i>g<sub>m</sub></i>/<i>I<sub>D</sub> </i>Curves 326</p> <p>11.2.2 <i>C</i><sub>OX</sub> and μ<i>C</i><sub>OX</sub> 329</p> <p>11.2.3 Early Voltage (<i>V<sub>A</sub></i>) 331</p> <p>11.3 Ultra-Low Power and Ultra-Low Voltage RF-Powered Transceiver for Autonomous Sensors 332</p> <p>11.3.1 Power Management (PM) and Receiver (RX) 332</p> <p>11.3.1.1 Rectifier 333</p> <p>11.3.1.2 Voltage Reference (VREF) Circuit 335</p> <p>11.3.1.3 Comparator for Power Management (COMP1) 335</p> <p>11.3.1.4 Current Reference Circuit (IREF) 336</p> <p>11.3.1.5 Comparator for the Demodulation (COMP2) 336</p> <p>11.3.2 Control Unit (CU) 336</p> <p>11.3.3 Transmitter (TX) 337</p> <p>11.3.3.1 Voltage-controlled oscillator (VCO) 337</p> <p>11.3.3.2 Power amplifier (PA) with built-in driver 340</p> <p>11.4 Experimental Results 341</p> <p>11.5 Conclusion 343</p> <p>Acknowledgments 343</p> <p>References 344</p> <p><b>12 Rectenna Optimization Guidelines for Ambient Electromagnetic Energy Harvesting </b><b>347<br /></b><i>Erika Vandelle, Simon Hemour, Tan-Phu Vuong, Gustavo Ardila, and Ke Wu</i></p> <p>12.1 Introduction 347</p> <p>12.2 Rectennas Under Low Input Powers 348</p> <p>12.2.1 Rectifier Optimization 350</p> <p>12.2.2 Low Power Matching Network Optimization 353</p> <p>12.2.2.1 The Bode-Fano Criterion 353</p> <p>12.2.2.2 Matching Network Efficiency 354</p> <p>12.2.3 Low-Power Antenna Optimization 356</p> <p>12.2.3.1 Enhancement of the Output DC Power 357</p> <p>12.2.3.2 Rectenna Array 358</p> <p>12.2.3.3 Antenna Array with BFN 358</p> <p>12.2.3.4 Optimization of the Antenna Efficiency 361</p> <p>12.3 The Chance of Collecting Ambient Electromagnetic Energy with a Specific Antenna 361</p> <p>12.3.1 Frequency Spectrum 362</p> <p>12.3.2 Polarization 362</p> <p>12.3.3 Spatial Coverage 365</p> <p>12.3.4 Harvesting Capability 366</p> <p>12.4 Conclusion 367</p> <p>References 368</p> <p>Index 375</p>
<p><b>NUNO BORGES CARVALHO, P<small>H</small>D,</b> is a Full Professor at DETI, University of Aveiro, a Senior Research Scientist with the Institute of Telecommunications, and an IEEE Fellow. He is associate editor of the <i>IEEE Microwave Magazine</i> and <i>Cambridge Wireless Power Transfer Journal</i> and former associate editor of the <i>IEEE Transactions on Microwave Theory and Techniques</i>. Dr. Borges Carvalho belongs to the ADCOM of IEEE-MTT and is the Vice-Chair of the URSI Commission A (Metrology Group).</p> <p><b>APOSTOLOS GEORGIADIS, P<small>H</small>D,</b> is Honorary Associate Professor at Heriot-Watt University, Edinburgh, UK. He is Vice-Chair of EU COST Action IC1301 on Wireless Power Transfer for Sustainable Electronics. He is former Editor-in-Chief of <i>Cambridge Wireless Power Transfer Journal</i> and former Associate Editor of the <i>IEEE Microwave Wireless Components Letters</i> and <i>IET Microwaves Antennas and Propagation</i> journals. He is Chairman of URSI Commission D Electronics and Photonics and a Distinguished Lecturer of IEEE Council on RFID (CRFID).</p>
<p><b>Provides a collection of works produced by COST Action IC1301 with the goal of achieving significant advances in the field of wireless power transmission</b> <p>This book information from COST Action IC1301, a group of academic and industry experts seeking to align research efforts in the field of wireless power transmission (WPT). It begins with a discussion of backscatter as a solution for Internet of Things (IoT) devices and goes on to describe ambient backscattering sensors that use FM broadcasting for low cost and low power wireless applications. The book also explores localization of passive RFID tags and augmented tags using nonlinearities of RFID chips. It concludes with a review of methods of electromagnetic characterization of textile materials for the development of wearable antennas. <p><i>Wireless Power Transmission for Sustainable Electronics: COST WiPE - IC1301</i> covers textile-supported wireless energy transfer, and reviews methods for the electromagnetic characterization of textile materials for the development of wearable antennas. It also looks at: backscatter RFID sensor systems for remote health monitoring; simultaneous localization (of robots and objects) and mapping (SLAM); autonomous system of wireless power distribution for static and moving nodes of wireless sensor networks; and more. <ul> <li>Presents techniques for smart beam-forming for "on demand" wireless power transmission (WPT)</li> <li>Discusses RF and microwave energy harvesting for space applications</li> <li>Describes miniaturized RFID transponders for object identification and sensing</li> </ul> <p><i>Wireless Power Transmission for Sustainable Electronics: COST WiPE - IC1301</i> is an excellent book for both graduate students and industry engineers involved in wireless communications and power transfer, and sustainable materials for those fields.

Diese Produkte könnten Sie auch interessieren:

From Photon to Pixel
From Photon to Pixel
von: Henri Maître
PDF ebook
139,99 €
Computer Vision in Vehicle Technology
Computer Vision in Vehicle Technology
von: Antonio M. López, Atsushi Imiya, Tomas Pajdla, Jose M. Álvarez
PDF ebook
81,99 €
Foundations of Electromagnetic Compatibility
Foundations of Electromagnetic Compatibility
von: Bogdan Adamczyk
PDF ebook
117,99 €