Details

Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells


Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells


1. Aufl.

von: Alagarsamy Pandikumar, Kandasamy Jothivenkatachalam, Karuppanapillai B. Bhojanaa

126,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 30.10.2019
ISBN/EAN: 9781119557388
Sprache: englisch
Anzahl Seiten: 288

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar cell technology</b></p> <p>Written by a collection of experts in the field of solar cell technology, this book focuses on the engineering of a variety of functional materials for improving photoanode efficiency of dye-sensitized solar cells (DSSC). The first two chapters describe operation principles of DSSC, charge transfer dynamics, as well as challenges and solutions for improving DSSCs. The remaining chapters focus on interfacial engineering of functional materials at the photoanode surface to create greater output efficiency.</p> <p><i>Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells</i> begins by introducing readers to the history, configuration, components, and working principles of DSSC It then goes on to cover both nanoarchitectures and light scattering materials as photoanode. Function of compact (blocking) layer in the photoanode and of TiCl4 post-treatment in the photoanode are examined at next. Next two chapters look at photoanode function of doped semiconductors and binary semiconductor metal oxides. Other chapters consider nanocomposites, namely, plasmonic nanocomposites, carbon nanotube based nanocomposites, graphene based nanocomposites, and graphite carbon nitride based nanocompositesas photoanodes. The book:</p> <ul> <li>Provides comprehensive coverage of the fundamentals through the applications of DSSC</li> <li>Encompasses topics on various functional materials for DSSC technology</li> <li>Focuses on the novel design and application of materials in DSSC, to develop more efficient renewable energy sources</li> <li>Is useful for material scientists, engineers, physicists, and chemists interested in functional materials for the design of efficient solar cells</li> </ul> <p><i>Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells</i> will be of great benefit to graduate students, researchers and engineers, who work in the multi-disciplinary areas of material science, engineering, physics, and chemistry.</p>
<p>List of Contributors xi</p> <p>Preface xv</p> <p><b>1 Dye-Sensitized Solar Cells: History, Components, Configuration, and Working Principle 1<br /></b><i>S.N. Karthick, K.V. Hemalatha, Suresh Kannan Balasingam, F. Manik Clinton, S. Akshaya, and Hee-Je Kim</i></p> <p>1.1 Introduction 1</p> <p>1.2 History of Dye-sensitized Solar Cells 3</p> <p>1.3 Components of DSSCs 4</p> <p>1.3.1 Conductive Glass Substrate 4</p> <p>1.3.2 Photoanode 4</p> <p>1.3.3 Counter Electrode 4</p> <p>1.3.4 Electrolytes 6</p> <p>1.3.4.1 Types of Solvents Used in Electrolytes 6</p> <p>1.3.4.2 Alternative Redox Mediators 7</p> <p>1.3.5 Dyes 8</p> <p>1.4 Configuration of DSSCs 8</p> <p>1.4.1 Metal Substrates for Photoanode and Glass/TCO for Counter Electrode 8</p> <p>1.4.2 Metal Substrates for Counter Electrode and Glass/TCO for Photoanode 10</p> <p>1.4.3 Metal Substrate for Photoanode and Polymer Substrate for Counter Electrode 10</p> <p>1.4.4 Polymer Substrates for Flexible DSSCs 10</p> <p>1.4.5 Glass/TCO-Free Metal Substrates for Flexible DSSCs 11</p> <p>1.4.6 Glass/TCO-Free Metal Wire Substrates for Flexible DSSCs 11</p> <p>1.5 Working Principle of DSSCs 11</p> <p>1.5.1 Electron Transfer Mechanism in DSSCs 14</p> <p>1.5.2 Photoelectric Performance 14</p> <p>Acknowledgments 15</p> <p>References 15</p> <p><b>2 Function of Photoanode: Charge Transfer Dynamics, Challenges, and Alternative Strategies 17<br /></b><i>A. Dennyson Savariraj and R.V. Mangalaraja</i></p> <p>2.1 Introduction 17</p> <p>2.2 The General Composition of DSSC 18</p> <p>2.3 Selection of Substrate for DSSCs 18</p> <p>2.4 Photoanode 19</p> <p>2.4.1 Coating Procedure 20</p> <p>2.4.2 Significance of Using Mesoporous Structure 20</p> <p>2.5 Sensitizer 20</p> <p>2.6 Charge Transfer Mechanism 21</p> <p>2.7 Interfaces 21</p> <p>2.8 Significance of Dye/Metal Oxide Interface 22</p> <p>2.9 Factors That Influence Efficiency in DSSC 23</p> <p>2.9.1 Dye Aggregation 23</p> <p>2.9.2 Effect of Metal Oxide on the Performance of Metal Oxide/Dye Interface 24</p> <p>2.9.3 Role of Electronic Structure of Metal Oxides 25</p> <p>2.10 Kinetics of Operation in DSSCs 26</p> <p>2.11 Strategies to Improve the Photoanode Performance 28</p> <p>2.11.1 TiCl<sub>4</sub> Treatment 28</p> <p>2.11.2 Composites 28</p> <p>2.11.3 Light Scattering 29</p> <p>2.11.4 Nanoarchitectures 29</p> <p>2.11.5 Doping 30</p> <p>2.11.6 Interfacial Engineering 30</p> <p>2.12 Conclusion 30</p> <p>Acknowledgments 31</p> <p>References 31</p> <p><b>3 Nanoarchitectures as Photoanodes 35<br /></b><i>Hari Murthy</i></p> <p>3.1 Introduction 35</p> <p>3.2 DSSC Operation 36</p> <p>3.3 Nanoarchitectures for Improved Device Performance of Photoanodes 39</p> <p>3.3.1 TiO<sub>2</sub> 39</p> <p>3.3.2 ZnO 51</p> <p>3.3.3 SnO<sub>2</sub> 53</p> <p>3.3.4 Nb<sub>2</sub>O<sub>5</sub> 55</p> <p>3.3.5 Graphene 55</p> <p>3.3.6 Other Photoanode Materials 56</p> <p>3.4 Future Outlook and Challenges 65</p> <p>3.5 Conclusion 66</p> <p>References 66</p> <p><b>4 Light Scattering Materials as Photoanodes 79<br /></b><i>Rajkumar C and A. Arulraj</i></p> <p>4.1 Introduction 79</p> <p>4.2 Introduction to Light Scattering 79</p> <p>4.3 Materials for Light Scattering in DSSCs 80</p> <p>4.4 Early Theoretical Predictions of Light Scattering in DSSCs 82</p> <p>4.5 Different Light Scattering Materials 85</p> <p>4.5.1 Mixing of Large Particles into Small Particles 85</p> <p>4.5.2 Voids as Light Scatters 87</p> <p>4.5.3 Nano-Composites for Light Scattering 87</p> <p>4.5.3.1 Nanowire–Nanoparticle Composite 87</p> <p>4.5.3.2 Nanofiber–Nanoparticle Composite 87</p> <p>4.5.3.3 SrTiO<sub>3</sub> Nanocubes–ZnO Nanoparticle Composite 88</p> <p>4.5.3.4 Silica Nanosphere–ZnO Nanoparticle Composite 88</p> <p>4.5.3.5 SnO<sub>2</sub> Aggregate–SnO<sub>2</sub> Nanosheet Composite 88</p> <p>4.5.3.6 Ag (4,4′-Dicyanamidobiphenyl) Complex–TiO<sub>2</sub> NP Composite 88</p> <p>4.6 Light Scattering Layers 88</p> <p>4.6.1 Surface Modified TiO<sub>2</sub> Particles in Scattering Layer 88</p> <p>4.6.2 Dual Functional Materials in DSSC 89</p> <p>4.6.3 Double-Light Scattering Layer 89</p> <p>4.6.4 Large Particles as Scattering Layers 89</p> <p>4.6.4.1 TiO<sub>2</sub> Nanotubes 90</p> <p>4.6.4.2 TiO<sub>2</sub> Nanowires 90</p> <p>4.6.4.3 TiO<sub>2</sub> Nanospindles 90</p> <p>4.6.4.4 TiO<sub>2</sub> Nanofibers 90</p> <p>4.6.4.5 TiO<sub>2</sub> Rice Grain Nanostructures 90</p> <p>4.6.4.6 Nest-Shaped TiO<sub>2</sub> Structures 91</p> <p>4.6.4.7 Nano-Embossed Hollow Spherical TiO<sub>2</sub> 91</p> <p>4.6.4.8 Hexagonal TiO<sub>2</sub> Plates 91</p> <p>4.6.4.9 TiO<sub>2</sub> Photonic Crystals 91</p> <p>4.6.4.10 Cubic CeO<sub>2</sub> Nanoparticles 94</p> <p>4.6.4.11 Spherical TiO<sub>2</sub> Aggregates 94</p> <p>4.6.4.12 Hierarchical TiO<sub>2</sub> Submicroflowers 94</p> <p>4.6.4.13 SnO<sub>2</sub> Aggregates 94</p> <p>4.6.4.14 ZnO Nanoflowers 95</p> <p>4.6.5 Core–Shell Nanoparticles for Light Scattering in DSSCs 95</p> <p>4.6.6 Double-Layer Photoanode 95</p> <p>4.6.6.1 TiO<sub>2</sub> Aggregates 96</p> <p>4.6.6.2 Morphology-Controlled 1D–3D Bilayer TiO<sub>2</sub> Nanostructures 96</p> <p>4.6.6.3 Quintuple-Shelled SnO<sub>2</sub> Hollow Microspheres 96</p> <p>4.6.6.4 Carbon-Based Materials for Light Scattering 96</p> <p>4.6.6.5 3D N-Doped TiO<sub>2</sub> Microspheres Used as Scattering Layers 96</p> <p>4.6.6.6 ZnO Hollow Spheres and Urchin-like TiO<sub>2</sub> Microspheres 96</p> <p>4.6.6.7 SnO<sub>2</sub> as Light-Scattering Layer 97</p> <p>4.6.7 Three-Layer Photoanode 97</p> <p>4.6.8 Four-Layer Photoanode 97</p> <p>4.6.9 Surface Plasmon Effect in DSSC 97</p> <p>4.7 Conclusion 99</p> <p>References 99</p> <p><b>5 Function of Compact (Blocking) Layer in Photoanode 107<br /></b><i>Su Pei Lim</i></p> <p>5.1 Introduction 107</p> <p>5.2 Titanium Dioxide (TiO<sub>2</sub>) and Titanium (Ti)-Based Material as a Compact Layer 107</p> <p>5.3 Zinc Oxide (ZnO) as a Compact Layer 112</p> <p>5.4 Less Common Metal Oxide as a Compact Layer 117</p> <p>5.5 Conclusion 118</p> <p>References 121</p> <p><b>6 Function of TiCl<sub>4</sub> Posttreatment in Photoanode 125<br /></b><i>T.S. Senthil and C.R. Kalaiselvi</i></p> <p>6.1 Introduction 125</p> <p>6.2 Role of TiCl<sub>4</sub> Posttreatment in Photo-Anode 126</p> <p>6.3 Effect of Posttreatment of TiCl<sub>4</sub> on Various Perspectives 126</p> <p>6.3.1 TiO<sub>2</sub> Morphology, Porosity, and Surface Area 126</p> <p>6.3.2 Dye Adsorption and Photocurrent Generation 129</p> <p>6.3.3 Electron Transport and Diffusion Coefficient 132</p> <p>6.3.4 Recombination Losses at Short Circuit 134</p> <p>6.3.5 Concentration and Dipping Time of TiCl<sub>4</sub> 135</p> <p>6.4 Conclusion 136</p> <p>References 137</p> <p><b>7 Doped Semiconductor as Photoanode 139<br /></b><i>K. S. Rajni and T. Raguram</i></p> <p>7.1 Introduction 139</p> <p>7.2 Photoanode 140</p> <p>7.3 Characterization 141</p> <p>7.4 Doped TiO<sub>2</sub> Photoanodes 141</p> <p>7.4.1 Alkali Earth Metals-doped TiO<sub>2</sub> 141</p> <p>7.4.1.1 Lithium-doped TiO<sub>2</sub> 141</p> <p>7.4.1.2 Magnesium-doped TiO<sub>2</sub> 143</p> <p>7.4.1.3 Calcium-doped TiO<sub>2</sub> 143</p> <p>7.4.2 Metalloids-doped TiO<sub>2</sub> 143</p> <p>7.4.2.1 Boron-doped TiO<sub>2</sub> 145</p> <p>7.4.2.2 Silicon-doped TiO<sub>2</sub> 145</p> <p>7.4.2.3 Germanium-doped TiO<sub>2</sub> 145</p> <p>7.4.2.4 Antimony-doped TiO<sub>2</sub> 146</p> <p>7.4.3 Nonmetals-doped TiO<sub>2</sub> 146</p> <p>7.4.3.1 Carbon-doped TiO<sub>2</sub> 146</p> <p>7.4.3.2 Nitrogen-doped TiO<sub>2</sub> 147</p> <p>7.4.3.3 Fluorine-doped TiO<sub>2</sub> 147</p> <p>7.4.3.4 Sulfur-doped TiO<sub>2</sub> 147</p> <p>7.4.3.5 Iodine-doped TiO<sub>2</sub> 148</p> <p>7.4.4 Transition Metals-doped TiO<sub>2</sub> 148</p> <p>7.4.4.1 Scandium-doped TiO<sub>2</sub> 148</p> <p>7.4.4.2 Vanadium, Niobium, and Tantalum-doped TiO<sub>2</sub> 148</p> <p>7.4.4.3 Chromium-doped TiO<sub>2</sub> 148</p> <p>7.4.4.4 Manganese and Cobalt-doped TiO<sub>2</sub> 150</p> <p>7.4.4.5 Iron-doped TiO<sub>2</sub> 150</p> <p>7.4.4.6 Nickel-doped TiO<sub>2</sub> 151</p> <p>7.4.4.7 Copper-doped TiO<sub>2</sub> 152</p> <p>7.4.4.8 Zinc-doped TiO<sub>2</sub> 153</p> <p>7.4.4.9 Yttrium-doped TiO<sub>2</sub> 153</p> <p>7.4.4.10 Zirconium-doped TiO<sub>2</sub> 154</p> <p>7.4.4.11 Molybdenum-doped TiO<sub>2</sub> 154</p> <p>7.4.4.12 Silver-doped TiO<sub>2</sub> 155</p> <p>7.4.5 Post-Transition Metals 155</p> <p>7.4.5.1 Aluminum-doped TiO<sub>2</sub> 155</p> <p>7.4.5.2 Gallium-doped TiO<sub>2</sub> 155</p> <p>7.4.5.3 Indium-doped TiO<sub>2</sub> 155</p> <p>7.4.5.4 Tin-doped TiO<sub>2</sub> 156</p> <p>7.4.6 Lanthanides-doped TiO<sub>2</sub> 156</p> <p>7.4.6.1 Lanthanum-doped TiO<sub>2</sub> 156</p> <p>7.4.6.2 Cerium-doped TiO<sub>2</sub> 156</p> <p>7.4.6.3 Neodymium-doped TiO<sub>2</sub> 157</p> <p>7.4.6.4 Samarium-doped TiO<sub>2</sub> 157</p> <p>7.4.6.5 Europium-doped TiO<sub>2</sub> 157</p> <p>7.4.7 Co-doped TiO<sub>2</sub> 158</p> <p>7.4.8 Tri-doped TiO<sub>2</sub> 158</p> <p>7.5 Conclusion 158</p> <p>References 159</p> <p><b>8 Binary Semiconductor Metal Oxide as Photoanodes 163<br /></b><i>S.S. Kanmani, I. John Peter, A. Muthu Kumar, P. Nithiananthi, C. Raja Mohan, and K. Ramachandran</i></p> <p>8.1 Why Metal Oxide Semiconductors? 163</p> <p>8.2 Development of MOS-Based DSSC 164</p> <p>8.2.1 TiO<sub>2</sub>/ZnO Core/Shell Configuration 165</p> <p>8.2.2 Preparation of TiO<sub>2</sub>/ZnO Core/Shell Nanomaterials 165</p> <p>8.2.3 TiO<sub>2</sub>/ZnO Core/Shell Nanomaterials 165</p> <p>8.2.4 DSSC Performance of TiO<sub>2</sub>/ZnO Core/Shell Configuration 167</p> <p>8.3 Importance of Heterostructures 170</p> <p>8.4 I–V Characteristics 171</p> <p>8.5 Matching of Bandgaps 171</p> <p>8.6 Conclusion 189</p> <p>References 189</p> <p><b>9 Plasmonic Nanocomposite as Photoanode 193<br /></b><i>Su Pei Lim</i></p> <p>9.1 Introduction 193</p> <p>9.2 Plasmonic Nanocomposite Modified TiO<sub>2</sub> as Photoanode 193</p> <p>9.3 Plasmonic Nanocomposite Modified ZnO as Photoanode 197</p> <p>9.4 Plasmonic Nanocomposite Modified with Less Common Metal Oxide as Photoanode 203</p> <p>9.5 Conclusion 206</p> <p>References 206</p> <p><b>10 Carbon Nanotubes-Based Nanocomposite as Photoanode 213<br /></b><i>Giovana R. Cagnani, Nirav Joshi, and Flavio M. Shimizu</i></p> <p>10.1 Introduction 213</p> <p>10.2 Recent Advances on DSSC Photoanodes 215</p> <p>10.3 Structure and Properties of Carbon Nanotubes 216</p> <p>10.4 CNT-Based Photoanode Material 218</p> <p>10.5 Effect of the Morphology and Interface of the CNT Photoanodes on the Efficiency of the DSSC 221</p> <p>10.6 Summary and Future Prospect 223</p> <p>Acknowledgment 223</p> <p>References 223</p> <p><b>11 Graphene-Based Nanocomposite as Photoanode 231<br /></b><i>Subhendu K. Panda, G. Murugadoss, and R. Thangamuthu</i></p> <p>11.1 Introduction 231</p> <p>11.2 Graphene–TiO<sub>2</sub> Nanocomposite for Photoanode 232</p> <p>11.3 Conclusion and Remarks 241</p> <p>References 242</p> <p><b>12 Graphitic Carbon Nitride Based Nanocomposites as Photoanodes 247<br /></b><i>T.S. Shyju, S. Anandhi, P. Vengatesh, C. Karthik Kumar, and M. Paulraj</i></p> <p>12.1 Introduction 247</p> <p>12.2 Importance of Graphitic Carbon Nitride 248</p> <p>12.3 Photoanodes for DSSC 250</p> <p>12.4 Preparation of Graphitic Carbon Nitride 252</p> <p>12.4.1 Bulk Graphitic Carbon Nitride 253</p> <p>12.4.2 Mesoporous Graphitic Carbon Nitrides 253</p> <p>12.4.3 Doping in Graphitic Carbon Nitride 254</p> <p>12.4.4 Ag Deposited g-C<sub>3</sub>N<sub>4</sub> 254</p> <p>12.4.5 Chemical Doping 254</p> <p>12.5 Operation Principles of DSSC 255</p> <p>12.5.1 Nanostructured Graphitic Carbon Nitride in DSSC 257</p> <p>12.6 Graphitic Carbon Nitride in Polymer Films Solar Cell 259</p> <p>12.7 Preparation of Carbon Nitride Counter Electrode 259</p> <p>12.8 Quantum Dot Graphitic Carbon Nitride 260</p> <p>12.9 Porous Graphitic Carbon Nitride 260</p> <p>12.10 Summary 260</p> <p>Acknowledgment 261</p> <p>References 261</p> <p>Index 265</p>
<p><b>ALAGARSAMY PANDIKUMAR, P<small>H</small>D,</b> is Scientist at CSIR-Central Electrochemical Research Institute, Karaikudi, India. His research includes development of novel materials involving graphene, graphitic carbon nitrides, and transition metal chalcogenides in combination with metals, metal oxides, polymers and carbon nanotubes for applications in photocatalysis, photoelectrocatalysis, dye-sensitized solar cells and electrochemical sensor. <p><b>KANDASAMY JOTHIVENKATACHALAM, P<small>H</small>D,</b> is Professor of Chemistry at Anna University, BIT campus, Tiruchirappalli, India. His research interests include photocatalysis, photoelectrochemistry, photoelectrocatalysis, and chemically modified electrodes. <p><b>KARUPPANAPILLAI B. BHOJANAA, MSc,</b> is DST-INSPIRE Research Fellow at Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India.
<p><b>Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar cell technology</b> <p>Written by a collection of experts in the field of solar cell technology, this book focuses on the engineering of a variety of functional materials for improving photoanode efficiency of dye-sensitized solar cells (DSSC). The first two chapters describe operation principles of DSSC, charge transfer dynamics, as well as challenges and solutions for improving DSSCs. The remaining chapters focus on interfacial engineering of functional materials at the photoanode surface to create greater output efficiency. <p><i>Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells</i>??begins by introducing readers to the history, configuration, components, and working principles of DSSC. It then goes on to cover both nanoarchitectures and light scattering materials as photoanode. Function of compact (blocking) layer in the photoanode and of TiCl4 post-treatment in the photoanode are examined at next. Next two chapters look at photoanode function of doped semiconductors and binary semiconductor metal oxides. Other chapters consider nanocomposites, namely, plasmonic nanocomposites, carbon nanotube based nanocomposites, graphene based nanocomposites, and graphite carbon nitride based nanocomposites as photoanodes. The book: <ul> <li>Provides comprehensive coverage of the fundamentals through the applications of DSSC</li> <li>Encompasses topics on various functional materials for DSSC technology</li> <li>Focuses on the novel design and application of materials in DSSC, to develop more efficient renewable energy sources</li> <li>Is useful for materials scientists, engineers, physicists, and chemists interested in functional materials for the design of efficient solar cells</li> </ul> <p><i>Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells</i>??will be of great benefit to graduate students, researchers and engineers, who work in the multi-disciplinary areas of materials science, engineering, physics, and chemistry.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €