Details

Power System Modeling, Computation, and Control


Power System Modeling, Computation, and Control


IEEE Press 1. Aufl.

von: Joe H. Chow, Juan J. Sanchez-Gasca

115,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 13.12.2019
ISBN/EAN: 9781119546887
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Provides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors</b></p> <p>Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis.</p> <p><i>Power System Modeling, Computation, and Control</i> provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission Systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling.</p> <ul> <li>Simplifies the learning of complex power system concepts, models, and dynamics</li> <li>Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design</li> <li>Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control</li> <li>Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems</li> <li>Written by experienced educators whose previous books and papers are used extensively by the international scientific community</li> </ul> <p><i>Power System Modeling, Computation, and Control</i> is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.</p>
<p>Preface xvii</p> <p>About the Companion Website xxi</p> <p><b>1 Introduction </b><b>1</b></p> <p>1.1 Electrification 1</p> <p>1.2 Generation, Transmission, and Distribution Systems 2</p> <p>1.2.1 Central Generating Station Model 2</p> <p>1.2.2 Renewable Generation 4</p> <p>1.2.3 Smart Grids 5</p> <p>1.3 Time Scales 5</p> <p>1.3.1 Dynamic Phenomena 5</p> <p>1.3.2 Measurements and Data 5</p> <p>1.3.3 Control Functions and System Operation 7</p> <p>1.4 Organization of the Book 7</p> <p><b>Part I System Concepts </b><b>9</b></p> <p><b>2 Steady-State Power Flow </b><b>11</b></p> <p>2.1 Introduction 11</p> <p>2.2 Power Network Elements and Admittance Matrix 12</p> <p>2.2.1 Transmission Lines 12</p> <p>2.2.2 Transformers 13</p> <p>2.2.3 Per Unit Representation 14</p> <p>2.2.4 Building the Network Admittance Matrix 14</p> <p>2.3 Active and Reactive Power Flow Calculations 16</p> <p>2.4 Power Flow Formulation 19</p> <p>2.5 Newton-Raphson Method 21</p> <p>2.5.1 General Procedure 21</p> <p>2.5.2 NR Solution of Power Flow Equations 22</p> <p>2.6 Advanced Power Flow Features 27</p> <p>2.6.1 Load Bus Voltage Regulation 27</p> <p>2.6.2 Multi-area Power Flow 28</p> <p>2.6.3 Active Line Power Flow Regulation 29</p> <p>2.6.4 Dishonest Newton-Raphson Method 30</p> <p>2.6.5 Fast Decoupled Loadflow 30</p> <p>2.6.6 DC Power Flow 31</p> <p>2.7 Summary and Notes 31</p> <p>Appendix 2.A Two-winding Transformer Model 32</p> <p>Appendix 2.B LU Decomposition and Sparsity Methods 36</p> <p>Appendix 2.C Power Flow and Dynamic Data for the 2-area, 4-machine System 39</p> <p>Problems 42</p> <p><b>3 Steady-State Voltage Stability Analysis </b><b>47</b></p> <p>3.1 Introduction 47</p> <p>3.2 Voltage Collapse Incidents 48</p> <p>3.2.1 Tokyo, Japan: July 23, 1987 48</p> <p>3.2.2 US Western Power System: July 2, 1996 48</p> <p>3.3 Reactive Power Consumption on Transmission Lines 49</p> <p>3.4 Voltage Stability Analysis of a Radial Load System 55</p> <p>3.4.1 Maximum Power Transfer 59</p> <p>3.5 Voltage Stability Analysis of Large Power Systems 61</p> <p>3.6 Continuation Power Flow Method 64</p> <p>3.6.1 Continuation Power Flow Algorithm 66</p> <p>3.7 An <i>AQ</i>-Bus Method for Solving Power Flow 67</p> <p>3.7.1 Analytical Framework for the <i>AQ</i>-Bus Method 69</p> <p>3.7.2 <i>AQ</i>-Bus Formulation for Constant-Power-Factor Loads 70</p> <p>3.7.3 <i>AQ</i>-Bus Algorithm for Computing Voltage Stability Margins 71</p> <p>3.8 Power System Components Affecting Voltage Stability 73</p> <p>3.8.1 Shunt Reactive Power Supply 74</p> <p>3.8.2 Under-Load Tap Changer 76</p> <p>3.9 Hierarchical Voltage Control 79</p> <p>3.10 Voltage Stability Margins and Indices 80</p> <p>3.10.1 Voltage Stability Margins 80</p> <p>3.10.2 Voltage Sensitivities 81</p> <p>3.10.3 Singular Values and Eigenvalues of the Power Flow Jacobian Matrix 82</p> <p>3.11 Summary and Notes 82</p> <p>Problems 83</p> <p><b>4 Power System Dynamics and Simulation </b><b>87</b></p> <p>4.1 Introduction 87</p> <p>4.2 Electromechanical Model of Synchronous Machines 88</p> <p>4.3 Single-Machine Infinite-Bus System 90</p> <p>4.4 Power System Disturbances 94</p> <p>4.4.1 Fault-On Analysis 94</p> <p>4.4.2 Post-Fault Analysis 96</p> <p>4.4.3 Other Types of Faults 98</p> <p>4.5 Simulation Methods 98</p> <p>4.5.1 Modified Euler Methods 99</p> <p>4.5.1.1 Euler Full-Step Modification Method 100</p> <p>4.5.1.2 Euler Half-Step Modification Method 101</p> <p>4.5.2 Adams-Bashforth Second-Order Method 101</p> <p>4.5.3 Selecting Integration Stepsize 102</p> <p>4.5.4 Implicit Integration Methods 104</p> <p>4.5.4.1 Integration of DAEs 105</p> <p>4.6 Dynamic Models of Multi-Machine Power Systems 106</p> <p>4.6.1 Constant-Impedance Loads 107</p> <p>4.6.2 Generator Current Injections 108</p> <p>4.6.3 Network Equation Extended to the Machine Internal Node 108</p> <p>4.6.4 Reduced Admittance Matrix Approach 109</p> <p>4.6.5 Method for Dynamic Simulation 109</p> <p>4.7 Multi-Machine Power System Stability 114</p> <p>4.7.1 Reference Frames for Machine Angles 115</p> <p>4.8 Power System Toolbox 117</p> <p>4.9 Summary and Notes 119</p> <p>Problems 119</p> <p><b>5 Direct Transient Stability Analysis </b><b>123</b></p> <p>5.1 Introduction 123</p> <p>5.2 Equal-Area Analysis of a Single-Machine Infinite-Bus System 124</p> <p>5.2.1 Power-Angle Curve 124</p> <p>5.2.2 Fault-On and Post-Fault Analysis 126</p> <p>5.3 Transient Energy Functions 127</p> <p>5.3.1 Lyapunov Functions 128</p> <p>5.3.2 Energy Function for Single-Machine Infinite-Bus Electromechanical Model 128</p> <p>5.4 Energy Function Analysis of a Disturbance Event 131</p> <p>5.5 Single-Machine Infinite-Bus Model Phase Portrait and Region of Stability 135</p> <p>5.6 Direct Stability Analysis using Energy Functions 138</p> <p>5.7 Energy Functions for Multi-Machine Power Systems 139</p> <p>5.7.1 Direct Stability Analysis for Multi-Machine Systems 142</p> <p>5.7.2 Computation of Critical Energy 143</p> <p>5.8 Dynamic Security Assessment 146</p> <p>5.9 Summary and Notes 146</p> <p>Problems 147</p> <p><b>6 Linear Analysis and Small-Signal Stability </b><b>149</b></p> <p>6.1 Introduction 149</p> <p>6.2 Electromechanical Modes 150</p> <p>6.3 Linearization 151</p> <p>6.3.1 State-Space Models 151</p> <p>6.3.2 Input-Output Models 152</p> <p>6.3.3 Modal Analysis and Time-Domain Solutions 152</p> <p>6.3.4 Time Response of Linear Systems 154</p> <p>6.3.5 Participation Factors 156</p> <p>6.4 Linearized Models of Single-Machine Infinite-Bus Systems 157</p> <p>6.5 Linearized Models of Multi-Machine Systems 160</p> <p>6.5.1 Synchronizing Torque Matrix and Eigenvalue Properties 162</p> <p>6.5.2 Modeshapes and Participation Factors 162</p> <p>6.6 Developing Linearized Models of Large Power Systems 164</p> <p>6.6.1 Analytical Partial Derivatives 165</p> <p>6.6.2 Numerical Linearization 169</p> <p>6.7 Summary and Notes 171</p> <p>Problems 171</p> <p><b>Part II Synchronous Machine Models and their Control Systems </b><b>175</b></p> <p><b>7 Steady-State Models and Operation of Synchronous Machines </b><b>177</b></p> <p>7.1 Introduction 177</p> <p>7.2 Physical Description 177</p> <p>7.2.1 Amortisseur Bars 179</p> <p>7.3 Synchronous Machine Model 179</p> <p>7.3.1 Flux Linkage and Voltage Equations 181</p> <p>7.3.2 Stator (Armature) Self and Mutual Inductances 183</p> <p>7.3.3 Mutual Inductances between Stator and Rotor 183</p> <p>7.3.4 Rotor Self and Mutual Inductances 184</p> <p>7.4 Park Transformation 185</p> <p>7.4.1 Electrical Power in <i>dq</i>0 Variables 188</p> <p>7.5 Reciprocal, Equal <i>L<sub>ad</sub> </i>Per-Unit System 189</p> <p>7.5.1 Stator Base Values 189</p> <p>7.5.2 Stator Voltage Equations 190</p> <p>7.5.3 Rotor Base Values 191</p> <p>7.5.4 Rotor Voltage Equations 191</p> <p>7.5.5 Stator Flux-Linkage Equations 192</p> <p>7.5.6 Rotor Flux-Linkage Equations 192</p> <p>7.5.7 Equal Mutual Inductance 192</p> <p>7.6 Equivalent Circuits 196</p> <p>7.6.1 Flux-Linkage Circuits 196</p> <p>7.6.2 Voltage Equivalent Circuits 197</p> <p>7.7 Steady-State Analysis 199</p> <p>7.7.1 Open-Circuit Condition 199</p> <p>7.7.2 Loaded Condition 201</p> <p>7.7.3 Drawing Voltage-Current Phasor Diagrams 202</p> <p>7.8 Saturation Effects 204</p> <p>7.8.1 Representations of Magnetic Saturation 205</p> <p>7.9 Generator Capability Curves 207</p> <p>7.10 Summary and Notes 209</p> <p>Problems 209</p> <p><b>8 Dynamic Models of Synchronous Machines </b><b>213</b></p> <p>8.1 Introduction 213</p> <p>8.2 Machine Dynamic Response During Fault 213</p> <p>8.2.1 DC Offset and Stator Transients 215</p> <p>8.3 Transient and Subtransient Reactances and Time Constants 216</p> <p>8.4 Subtransient Synchronous Machine Model 221</p> <p>8.5 Other Synchronous Machine Models 227</p> <p>8.5.1 Flux-Decay Model 227</p> <p>8.5.2 Classical Model 228</p> <p>8.6 <i>dq</i>-axes Rotation Between a Generator and the System 229</p> <p>8.7 Power System Simulation using Detailed Machine Models 230</p> <p>8.7.1 Power System Simulation Algorithm 231</p> <p>8.8 Linearized Models 232</p> <p>8.9 Summary and Notes 234</p> <p>Problems 235</p> <p><b>9 Excitation Systems </b><b>237</b></p> <p>9.1 Introduction 237</p> <p>9.2 Excitation System Models 238</p> <p>9.3 Type DC Exciters 239</p> <p>9.3.1 Separately Excited DC exciter 239</p> <p>9.3.2 Self-Excited DC Exciter 243</p> <p>9.3.3 Voltage Regulator 244</p> <p>9.3.4 Initialization of DC Type Exciters 245</p> <p>9.3.5 Transfer Function Analysis 246</p> <p>9.3.6 Generator and Exciter Closed-Loop System 248</p> <p>9.3.7 Excitation System Response Ratios 251</p> <p>9.4 Type AC Exciters 252</p> <p>9.5 Type ST Excitation Systems 254</p> <p>9.6 Load Compensation Control 257</p> <p>9.7 Protective Functions 259</p> <p>9.8 Summary and Notes 259</p> <p>Appendix 9.A Anti-Windup Limits 260</p> <p>Problems 261</p> <p><b>10 Power System Stabilizers </b><b>265</b></p> <p>10.1 Introduction 265</p> <p>10.2 Single-Machine Infinite-Bus System Model 266</p> <p>10.3 Synchronizing and Damping Torques 271</p> <p>10.3.1 Δ<i>T<sub>e</sub></i><sub>2</sub> Under Constant Field Voltage 272</p> <p>10.3.2 Δ<i>T<sub>e</sub></i><sub>2</sub> With Excitation System Control 273</p> <p>10.4 Power System Stabilizer Design using Rotor Speed Signal 275</p> <p>10.4.1 PSS Design Requirements 276</p> <p>10.4.2 PSS Control Blocks 277</p> <p>10.4.3 PSS Design Methods 279</p> <p>10.4.4 Torsional Filters 284</p> <p>10.4.5 PSS Field Tuning 287</p> <p>10.4.6 Interarea Mode Damping 287</p> <p>10.5 Other PSS Input Signals 288</p> <p>10.5.1 Generator Terminal Bus Frequency 288</p> <p>10.5.2 Electrical Power Output Δ<i>P<sub>e</sub> </i>288</p> <p>10.6 Integral-of-Accelerating-Power or Dual-Input PSS 289</p> <p>10.7 Summary and Notes 293</p> <p>Problems 293</p> <p><b>11 Load and Induction Motor Models </b><b>295</b></p> <p>11.1 Introduction 295</p> <p>11.2 Static Load Models 296</p> <p>11.2.1 Exponential Load Model 296</p> <p>11.2.2 Polynomial Load Model 297</p> <p>11.3 Incorporating ZIP Load Models in Dynamic Simulation and Linear Analysis 298</p> <p>11.4 Induction Motors: Steady-State Models 303</p> <p>11.4.1 Physical Description 304</p> <p>11.4.2 Mathematical Description 304</p> <p>11.4.2.1 Modeling Equations 304</p> <p>11.4.2.2 Reference Frame Transformation 306</p> <p>11.4.3 Equivalent Circuits 308</p> <p>11.4.4 Per-Unit Representation 310</p> <p>11.4.5 Torque-Slip Characteristics 311</p> <p>11.4.6 Reactive Power Consumption 313</p> <p>11.4.7 Motor Startup 314</p> <p>11.5 Induction Motors: Dynamic Models 315</p> <p>11.5.1 Initialization 318</p> <p>11.5.2 Reactive Power Requirement during Motor Stalling 320</p> <p>11.6 Summary and Notes 323</p> <p>Problems 324</p> <p><b>12 Turbine-Governor Models and Frequency Control </b><b>327</b></p> <p>12.1 Introduction 327</p> <p>12.2 Steam Turbines 328</p> <p>12.2.1 Turbine Configurations 328</p> <p>12.2.2 Steam Turbine-Governors 331</p> <p>12.3 Hydraulic Turbines 333</p> <p>12.3.1 Hydraulic Turbine-Governors 337</p> <p>12.3.2 Load Rejection of Hydraulic Turbines 338</p> <p>12.4 Gas Turbines and Co-Generation Plants 339</p> <p>12.5 Primary Frequency Control 342</p> <p>12.5.1 Isolated Turbine-Generator Serving Local Load 343</p> <p>12.5.2 Interconnected Units 347</p> <p>12.5.3 Frequency Response in US Power Grids 349</p> <p>12.6 Automatic Generation Control 351</p> <p>12.7 Turbine-Generator Torsional Oscillations and Subsynchronous Resonance 356</p> <p>12.7.1 Torsional Modes 356</p> <p>12.7.2 Electrical Network Modes 363</p> <p>12.7.3 SSR Occurrence and Countermeasures 365</p> <p>12.8 Summary and Notes 366</p> <p>Problems 367</p> <p><b>Part III Advanced Power System Topics </b><b>371</b></p> <p><b>13 High-Voltage Direct Current Transmission Systems </b><b>373</b></p> <p>13.1 Introduction 373</p> <p>13.1.1 HVDC System Installations and Applications 375</p> <p>13.1.2 HVDC System Economics 377</p> <p>13.2 AC/DC and DC/AC Conversion 377</p> <p>13.2.1 AC-DC Conversion using Ideal Diodes 378</p> <p>13.2.2 Three-Phase Full-Wave Bridge Converter 379</p> <p>13.3 Line-Commutation Operation in HVDC Systems 383</p> <p>13.3.1 Rectifier Operation 383</p> <p>13.3.1.1 Thyristor Ignition Delay Angle 383</p> <p>13.3.1.2 Commutation Overlap 385</p> <p>13.3.2 Inverter Operation 388</p> <p>13.3.3 Multiple Bridge Converters 389</p> <p>13.3.4 Equivalent Circuit 389</p> <p>13.4 Control Modes 391</p> <p>13.4.1 Mode 1: Normal Operation 392</p> <p>13.4.2 Mode 2: Reduced-Voltage Operation 393</p> <p>13.4.3 Mode 3: Transitional Mode 394</p> <p>13.4.4 System Operation Under Fault Conditions 396</p> <p>13.4.5 Communication Requirements 396</p> <p>13.5 Multi-terminal HVDC Systems 397</p> <p>13.6 Harmonics and Reactive Power Requirement 398</p> <p>13.6.1 Harmonic Filters 398</p> <p>13.6.2 Reactive Power Support 399</p> <p>13.7 AC-DC Power Flow Computation 401</p> <p>13.8 Dynamic Models 406</p> <p>13.8.1 Converter Control 406</p> <p>13.8.2 DC Line Dynamics 408</p> <p>13.8.3 AC-DC Network Solution 409</p> <p>13.9 Damping Control Design 411</p> <p>13.10 Summary and Notes 416</p> <p>Problems 416</p> <p><b>14 Flexible AC Transmission Systems </b><b>421</b></p> <p>14.1 Introduction 421</p> <p>14.2 Static Var Compensator 422</p> <p>14.2.1 Circuit Configuration and Thyristor Switching 422</p> <p>14.2.2 Steady-State Voltage Regulation and Stability Enhancement 423</p> <p>14.2.2.1 Voltage Stability Enhancement 424</p> <p>14.2.2.2 Transient Stability Enhancement 427</p> <p>14.2.3 Dynamic Voltage Control and Droop Regulation 429</p> <p>14.2.4 Dynamic Simulation 433</p> <p>14.2.5 Damping Control Design using SVC 435</p> <p>14.3 Thyristor-Controlled Series Compensator 441</p> <p>14.3.1 Fixed Series Compensation 442</p> <p>14.3.2 TCSC Circuit Configuration and Switching 442</p> <p>14.3.3 Voltage Reversal Control 444</p> <p>14.3.4 Mitigation of Subsynchronous Oscillations 445</p> <p>14.3.5 Dynamic Model and Damping Control Design 446</p> <p>14.4 Shunt VSC Controllers 451</p> <p>14.4.1 Voltage-Sourced Converters 451</p> <p>14.4.1.1 Three-Phase Full-Wave VSCs 453</p> <p>14.4.1.2 Three-Level Converters 455</p> <p>14.4.1.3 Harmonics 455</p> <p>14.4.2 Static Compensator 458</p> <p>14.4.2.1 Steady-State Analysis 458</p> <p>14.4.2.2 Dynamic Model 459</p> <p>14.4.3 VSC HVDC Systems 463</p> <p>14.4.3.1 Steady-State Operation 463</p> <p>14.4.3.2 Dynamic Model 466</p> <p>14.5 Series and Coupled VSC Controllers 469</p> <p>14.5.1 Static Synchronous Series Compensation 469</p> <p>14.5.1.1 Steady-State Analysis 469</p> <p>14.5.2 Unified Power Flow Controller 471</p> <p>14.5.2.1 Steady-State Analysis 471</p> <p>14.5.3 Interline Power Flow Controller 475</p> <p>14.5.3.1 Steady-State Analysis 475</p> <p>14.5.4 Dynamic Model 478</p> <p>14.5.4.1 Series Voltage Insertion 479</p> <p>14.5.4.2 Line Active and Reactive Power Flow Control 480</p> <p>14.6 Summary and Notes 480</p> <p>Problems 481</p> <p><b>15 Wind Power Generation and Modeling </b><b>487</b></p> <p>15.1 Background 487</p> <p>15.2 Wind Turbine Components 489</p> <p>15.3 Wind Power 491</p> <p>15.3.1 Blade Angle Orientation 492</p> <p>15.3.2 Power Coefficient 494</p> <p>15.4 Wind Turbine Types 496</p> <p>15.4.1 Type 1 496</p> <p>15.4.2 Type 2 497</p> <p>15.4.3 Type 3 498</p> <p>15.4.4 Type 4 498</p> <p>15.5 Steady-State Characteristics 499</p> <p>15.5.1 Type-1Wind Turbine 499</p> <p>15.5.2 Type-2Wind Turbine 501</p> <p>15.5.3 Type-3Wind Turbine 502</p> <p>15.6 Wind Power Plant Representation 505</p> <p>15.7 Overall Control Criteria for Variable-Speed Wind Turbines 510</p> <p>15.8 Wind Turbine Model for Transient Stability Planning Studies 513</p> <p>15.8.1 Overall Model Structure 513</p> <p>15.8.2 Generator/Converter Model 514</p> <p>15.8.3 Electrical Control Model 515</p> <p>15.8.4 Drive-Train Model 517</p> <p>15.8.5 Torque Control Model 519</p> <p>15.8.6 Aerodynamic Model 520</p> <p>15.8.7 Pitch Controller 522</p> <p>15.9 Plant-Level Control Model 526</p> <p>15.9.1 Simulation Example 526</p> <p>15.10 Summary and Notes 527</p> <p>Problems 528</p> <p><b>16 Power System Coherency and Model Reduction </b><b>531</b></p> <p>16.1 Introduction 531</p> <p>16.2 Interarea Oscillations and Slow Coherency 532</p> <p>16.2.1 Slow Coherency 534</p> <p>16.2.2 Slow Coherent Areas 536</p> <p>16.2.3 Finding Coherent Groups of Machines 541</p> <p>16.3 Generator Aggregation and Network Reduction 544</p> <p>16.3.1 Generator Aggregation 545</p> <p>16.3.2 Dynamic Aggregation 548</p> <p>16.3.3 Load Bus Elimination 551</p> <p>16.4 Simulation Studies 555</p> <p>16.4.1 Singular Perturbations Method 556</p> <p>16.5 Linear Reduced Model Methods 557</p> <p>16.5.1 Modal Truncation 558</p> <p>16.5.2 Balanced Model Reduction Method 559</p> <p>16.6 Dynamic Model Reduction Software 559</p> <p>16.7 Summary and Notes 560</p> <p>Problems 560</p> <p>References 563</p> <p>Index 577</p>
<p><b>JOE H. CHOW (</b><b>周祖康</b><b>), P<small>H</small>D,</b> <b>FIEEE, NAE,</b> is Institute Professor of Electrical, Computer, and Systems Engineering at Rensselaer Polytechnic Institute, Troy, NY, USA. <p><b>JUAN J. SANCHEZ-GASCA, P<small>H</small>D,</b> <b>FIEEE,</b> is a Technical Director at GE Energy Consulting, Schenectady, NY, USA.
<p><b>PROVIDES STUDENTS WITH AN UNDERSTANDING OF THE MODELING AND PRACTICE IN POWER SYSTEM STABILITY ANALYSIS AND CONTROL DESIGN, AS WELL AS THE COMPUTATIONAL TOOLS USED BY COMMERCIAL VENDORS</b> <p>Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis. <p><i>Power System Modeling, Computation, and Control</i> provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling. <ul> <li>Simplifies the learning of complex power system concepts, models, and dynamics</li> <li>Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design</li> <li>Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control</li> <li>Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems</li> <li>Written by experienced educators whose previous books and papers are used extensively by the international scientific community</li> </ul> <p><i>Power System Modeling, Computation, and Control</i> is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €