Details

Solar Engineering of Thermal Processes, Photovoltaics and Wind


Solar Engineering of Thermal Processes, Photovoltaics and Wind


5. Aufl.

von: John A. Duffie, William A. Beckman, Nathan Blair

139,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 25.02.2020
ISBN/EAN: 9781119540311
Sprache: englisch
Anzahl Seiten: 928

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The bible of solar engineering that translates solar energy theory to practice, revised and updated</b></p> <p>The updated Fifth Edition of <i>Solar Engineering of Thermal Processes, Photovoltaics and Wind </i>contains the fundamentals of solar energy and explains how we get energy from the sun. The authors—noted experts on the topic—provide an introduction to the technologies that harvest, store, and deliver solar energy, such as photovoltaics, solar heaters, and cells. The book also explores the applications of solar technologies and shows how they are applied in various sectors of the marketplace.</p> <p>The revised Fifth Edition offers guidance for using two key engineering software applications, Engineering Equation Solver (EES) and System Advisor Model (SAM). These applications aid in solving complex equations quickly and help with performing long-term or annual simulations. The new edition includes all-new examples, performance data, and photos of current solar energy applications. In addition, the chapter on concentrating solar power is updated and expanded. The practice problems in the Appendix are also updated, and instructors have access to an updated print Solutions Manual. This important book: </p> <p>•    Covers all aspects of solar engineering from basic theory to the design of solar technology</p> <p>•    Offers in-depth guidance and demonstrations of Engineering Equation Solver (EES) and <br />      System Advisor Model (SAM) software</p> <p>•    Contains all-new examples, performance data, and photos of solar energy systems today</p> <p>•    Includes updated simulation problems and a solutions manual for instructors</p> <p>Written for students and practicing professionals in power and energy industries as well as those in research and government labs, <i>Solar Engineering of Thermal Processes, Fifth Edition </i>continues to be the leading solar engineering text and reference.</p>
<p>Preface xi</p> <p>Preface to the Fourth Edition xiii</p> <p>Preface to the Third Edition xv</p> <p>Preface to the Second Edition xvii</p> <p>Preface to the First Edition xix</p> <p><b>Part I Fundamentals 1</b></p> <p><b>1 Solar Radiation 3</b></p> <p>1.1 The Sun 3</p> <p>1.2 The Solar Constant 5</p> <p>1.3 Spectral Distribution of Extraterrestrial Radiation 6</p> <p>1.4 Variation of Extraterrestrial Radiation 8</p> <p>1.5 Definitions 9</p> <p>1.6 Direction of Beam Radiation 12</p> <p>1.7 Angles for Tracking Surfaces 20</p> <p>1.8 Ratio of Beam Radiation on Tilted Surface to That on Horizontal Surface 24</p> <p>1.9 Shading 30</p> <p>1.10 Extraterrestrial Radiation on a Horizontal Surface 37</p> <p>1.11 Summary 41</p> <p>References 43</p> <p><b>2 Available Solar Radiation 45</b></p> <p>2.1 Definitions 45</p> <p>2.2 Pyrheliometers and Pyrheliometric Scales 46</p> <p>2.3 Pyranometers 50</p> <p>2.4 Measurement of Duration of Sunshine 55</p> <p>2.5 Solar Radiation Data 56</p> <p>2.6 Atmospheric Attenuation of Solar Radiation 61</p> <p>2.7 Estimation of Average Solar Radiation 66</p> <p>2.8 Estimation of Clear-Sky Radiation 70</p> <p>2.9 Distribution of Clear and Cloudy Days and Hours 73</p> <p>2.10 Beam and Diffuse Components of Hourly Radiation 76</p> <p>2.11 Beam and Diffuse Components of Daily Radiation 79</p> <p>2.12 Beam and Diffuse Components of Monthly Radiation 81</p> <p>2.13 Estimation of Hourly Radiation from Daily Data 83</p> <p>2.14 Radiation on Sloped Surfaces 86</p> <p>2.15 Radiation on Sloped Surfaces: Isotropic Sky 91</p> <p>2.16 Radiation on Sloped Surfaces: Anisotropic Sky 92</p> <p>2.17 Radiation Augmentation 98</p> <p>2.18 Beam Radiation on Moving Surfaces 103</p> <p>2.19 Average Radiation on Sloped Surfaces: Isotropic Sky 104</p> <p>2.20 Average Radiation on Sloped Surfaces: KT Method 108</p> <p>2.21 Effects of Receiving Surface Orientation on <i>H<sub>T</sub></i> 114</p> <p>2.22 Utilizability 116</p> <p>2.23 Generalized Utilizability 120</p> <p>2.24 Daily Utilizability 128</p> <p>2.25 Summary 134</p> <p>References 136</p> <p><b>3 Selected Heat Transfer Topics 141</b></p> <p>3.1 The Electromagnetic Spectrum 141</p> <p>3.2 Photon Radiation 142</p> <p>3.3 The Blackbody: Perfect Absorber and Emitter 142</p> <p>3.4 Planck’s Law and Wien’s Displacement Law 143</p> <p>3.5 Stefan-Boltzmann Equation 144</p> <p>3.6 Radiation Tables 145</p> <p>3.7 Radiation Intensity and Flux 147</p> <p>3.8 Infrared Radiation Exchange Between Gray Surfaces 149</p> <p>3.9 Sky Radiation 150</p> <p>3.10 Radiation Heat Transfer Coefficient 151</p> <p>3.11 Natural Convection Between Flat Parallel Plates and Between Concentric Cylinders 152</p> <p>3.12 Convection Suppression 157</p> <p>3.13 Vee-Corrugated Enclosures 161</p> <p>3.14 Heat Transfer Relations for Internal Flow 162</p> <p>3.15 Wind Convection Coefficients 166</p> <p>3.16 Heat Transfer and Pressure Drop in Packed Beds and Perforated Plates 168</p> <p>3.17 Effectiveness-NTU Calculations for Heat Exchangers 171</p> <p>3.18 Summary 173</p> <p>References 174</p> <p><b>4 Radiation Characteristics of Opaque Materials 177</b></p> <p>4.1 Absorptance and Emittance 178</p> <p>4.2 Kirchhoff’s Law 180</p> <p>4.3 Reflectance of Surfaces 181</p> <p>4.4 Relationships Among Absorptance, Emittance, and Reflectance 185</p> <p>4.5 Broadband Emittance and Absorptance 186</p> <p>4.6 Calculation of Emittance and Absorptance 187</p> <p>4.7 Measurement of Surface Radiation Properties 190</p> <p>4.8 Selective Surfaces 192</p> <p>4.9 Mechanisms of Selectivity 196</p> <p>4.10 Optimum Properties 199</p> <p>4.11 Angular Dependence of Solar Absorptance 200</p> <p>4.12 Absorptance of Cavity Receivers 201</p> <p>4.13 Specularly Reflecting Surfaces 202</p> <p>4.14 Advanced Radiation Heat Transfer Analysis 203</p> <p>4.15 Summary 205</p> <p>References 206</p> <p><b>5 Radiation Transmission through Glazing: Absorbed Radiation 209</b></p> <p>5.1 Reflection of Radiation 209</p> <p>5.2 Absorption by Glazing 213</p> <p>5.3 Optical Properties of Cover Systems 213</p> <p>5.4 Transmittance for Diffuse Radiation 218</p> <p>5.5 Transmittance-Absorptance Product 220</p> <p>5.6 Angular Dependence of (𝜏𝛼) 221</p> <p>5.7 Spectral Dependence of Transmittance 222</p> <p>5.8 Effects of Surface Layers on Transmittance 225</p> <p>5.9 Absorbed Solar Radiation 226</p> <p>5.10 Monthly Average Absorbed Radiation 230</p> <p>5.11 Absorptance of Rooms 236</p> <p>5.12 Absorptance of Photovoltaic Cells 238</p> <p>5.13 Summary 241</p> <p>References 243</p> <p><b>6 Flat-Plate Collectors 244</b></p> <p>6.1 Description of Flat-Plate Collectors 244</p> <p>6.2 Basic Flat-Plate Energy Balance Equation 245</p> <p>6.3 Temperature Distributions in Flat-Plate Collectors 246</p> <p>6.4 Collector Overall Heat Loss Coefficient 248</p> <p>6.5 Temperature Distribution Between Tubes and the Collector Efficiency Factor 262</p> <p>6.6 Temperature Distribution in Flow Direction 269</p> <p>6.7 Collector Heat Removal Factor and Flow Factor 270</p> <p>6.8 Critical Radiation Level 274</p> <p>6.9 Mean Fluid and Plate Temperatures 275</p> <p>6.10 Effective Transmittance-Absorptance Product 276</p> <p>6.11 Effects of Dust and Shading 279</p> <p>6.12 Heat Capacity Effects in Flat-Plate Collectors 280</p> <p>6.13 Liquid Heater Plate Geometries 283</p> <p>6.14 Air Heaters 288</p> <p>6.15 Measurements of Collector Performance 295</p> <p>6.16 Collector Characterizations 296</p> <p>6.17 Collector Tests: Efficiency, Incidence Angle Modifier, and Time Constant 297</p> <p>6.18 Test Data 307</p> <p>6.19 Thermal Test Data Conversion 310</p> <p>6.20 Flow Rate Corrections to <i>F<sub>R</sub></i> (𝜏𝛼)<sub>n</sub> and <i>F<sub>R</sub>U<sub>L</sub></i> 313</p> <p>6.21 Flow Distribution in Collectors 316</p> <p>6.22 In Situ Collector Performance 317</p> <p>6.23 Practical Considerations for Flat-Plate Collectors 318</p> <p>6.24 Putting It All Together 321</p> <p>6.25 Summary 326</p> <p>References 327</p> <p><b>7 Concentrating Collectors 331</b></p> <p>7.1 Collector Configurations 332</p> <p>7.2 Concentration Ratio 334</p> <p>7.3 Thermal Performance of Concentrating Collectors 336</p> <p>7.4 Optical Performance of Concentrating Collectors 343</p> <p>7.5 Cylindrical Absorber Arrays 344</p> <p>7.6 Optical Characteristics of Nonimaging Concentrators 346</p> <p>7.7 Orientation and Absorbed Energy for CPC Collectors 354</p> <p>7.8 Performance of CPC Collectors 358</p> <p>7.9 Linear Imaging Concentrators: Geometry 360</p> <p>7.10 Images Formed by Perfect Linear Concentrators 363</p> <p>7.11 Images from Imperfect Linear Concentrators 368</p> <p>7.12 Ray-Trace Methods for Evaluating Concentrators 370</p> <p>7.13 Incidence Angle Modifiers and Energy Balances 370</p> <p>7.14 Paraboloidal Concentrators 376</p> <p>7.15 Central-Receiver Collectors 377</p> <p>7.16 Practical Considerations 378</p> <p>7.17 Summary 379</p> <p>References 380</p> <p><b>8 Energy Storage 382</b></p> <p>8.1 Process Loads and Solar Collector Outputs 382</p> <p>8.2 Energy Storage in Solar Thermal Systems 384</p> <p>8.3 Water Storage 385</p> <p>8.4 Stratification in Storage Tanks 388</p> <p>8.5 Packed-Bed Storage 393</p> <p>8.6 Storage Walls 401</p> <p>8.7 Seasonal Storage 403</p> <p>8.8 Phase Change Energy Storage 405</p> <p>8.9 Chemical Energy Storage 410</p> <p>8.10 Battery Storage 411</p> <p>8.11 Hydroelectric and Compressed Air Storage 415</p> <p>8.12 Summary 418</p> <p>References 419</p> <p><b>9 Solar Process Loads 422</b></p> <p>9.1 Examples of Time-Dependent Loads 423</p> <p>9.2 Hot-Water Loads 424</p> <p>9.3 Space Heating Loads, Degree-Days, and Balance Temperature 425</p> <p>9.4 Building Loss Coefficients 428</p> <p>9.5 Building Energy Storage Capacity 430</p> <p>9.6 Cooling Loads 430</p> <p>9.7 Swimming Pool Heating Loads 431</p> <p>9.8 Summary 433</p> <p>References 434</p> <p><b>10 System Thermal Calculations 436</b></p> <p>10.1 Component Models 437</p> <p>10.2 Collector Heat Exchanger Factor 438</p> <p>10.3 Duct and Pipe Loss Factors 440</p> <p>10.4 Controls 443</p> <p>10.5 Collector Arrays: Series Connections 445</p> <p>10.6 Performance of Partially Shaded Collectors 447</p> <p>10.7 Series Arrays with Sections Having Different Orientations 449</p> <p>10.8 Use of Modified Collector Equations 451</p> <p>10.9 System Models 455</p> <p>10.10 Solar Fraction and Solar Savings Fraction 458</p> <p>10.11 Summary 459</p> <p>References 461</p> <p><b>11 Solar Process Economics 462</b></p> <p>11.1 Costs of Solar Process Systems 462</p> <p>11.2 Design Variables 465</p> <p>11.3 Economic Figures of Merit 467</p> <p>11.4 Discounting and Inflation 469</p> <p>11.5 Present-Worth Factor 471</p> <p>11.6 Life-Cycle Savings Method 474</p> <p>11.7 Evaluation of Other Economic Indicators 479</p> <p>11.8 The <i>P</i><sub>1</sub>, <i>P</i><sub>2</sub> Method 482</p> <p>11.9 Uncertainties in Economic Analyses 487</p> <p>11.10 Economic Analysis Using Solar Savings Fraction 490</p> <p>11.11 Summary 491</p> <p>References 491</p> <p><b>Part II Applications 493</b></p> <p><b>12 Solar Water Heating: Active and Passive 495</b></p> <p>12.1 Water Heating Systems 495</p> <p>12.2 Freezing, Boiling, and Scaling 499</p> <p>12.3 Auxiliary Energy 502</p> <p>12.4 Forced-Circulation Systems 504</p> <p>12.5 Low-Flow Pumped Systems 505</p> <p>12.6 Natural-Circulation Systems 507</p> <p>12.7 Integral Collector Storage Systems 510</p> <p>12.8 Retrofit Water Heaters 512</p> <p>12.9 Water Heating in Space Heating and Cooling Systems 512</p> <p>12.10 Testing and Rating of Solar Water Heaters 513</p> <p>12.11 Economics of Solar Water Heating 514</p> <p>12.12 Swimming Pool Heating 517</p> <p>12.13 Summary 518</p> <p>References 519</p> <p><b>13 Building Heating: Active 521</b></p> <p>13.1 Historical Notes 522</p> <p>13.2 Solar Heating Systems 523</p> <p>13.3 CSU House III Flat-Plate Liquid System 528</p> <p>13.4 CSU House II Air System 531</p> <p>13.5 Heating System Parametric Study 533</p> <p>13.6 Solar Energy–Heat Pump Systems 537</p> <p>13.7 Phase Change Storage Systems 542</p> <p>13.8 Seasonal Energy Storage Systems 545</p> <p>13.9 Solar and Off-Peak Electric Systems 549</p> <p>13.10 Solar System Overheating 550</p> <p>13.11 Solar Heating Economics 551</p> <p>13.12 Architectural Considerations 554</p> <p>References 556</p> <p><b>14 Building Heating: Passive and Hybrid Methods 559</b></p> <p>14.1 Concepts of Passive Heating 560</p> <p>14.2 Comfort Criteria and Heating Loads 561</p> <p>14.3 Movable Insulation and Controls 561</p> <p>14.4 Shading: Overhangs and Wingwalls 562</p> <p>14.5 Direct-Gain Systems 566</p> <p>14.6 Collector-Storage Walls and Roofs 571</p> <p>14.7 Sunspaces 575</p> <p>14.8 Active Collection–Passive Storage Hybrid Systems 577</p> <p>14.9 Other Hybrid Systems 578</p> <p>14.10 Passive Applications 579</p> <p>14.11 Heat Distribution in Passive Buildings 584</p> <p>14.12 Costs and Economics of Passive Heating 585</p> <p>14.13 Summary 587</p> <p>References 588</p> <p><b>15 Solar Cooling 590</b></p> <p>15.1 Solar Absorption Cooling 591</p> <p>15.2 Theory of Absorption Cooling 593</p> <p>15.3 Combined Solar Heating and Cooling 599</p> <p>15.4 Simulation Study of Solar Air Conditioning 600</p> <p>15.5 Operating Experience with Solar Cooling 603</p> <p>15.6 Applications of Solar Absorption Air Conditioning 606</p> <p>15.7 Solar Desiccant Cooling 606</p> <p>15.8 Ventilation and Recirculation Desiccant Cycles 609</p> <p>15.9 Solar-Mechanical Cooling 611</p> <p>15.10 Solar-Related Air Conditioning 614</p> <p>15.11 Passive Cooling 615</p> <p>References 616</p> <p><b>16 Solar Industrial Process Heat 619</b></p> <p>16.1 Integration with Industrial Processes 619</p> <p>16.2 Mechanical Design Considerations 620</p> <p>16.3 Economics of Industrial Process Heat 621</p> <p>16.4 Open-Circuit Air Heating Applications 622</p> <p>16.5 Recirculating Air System Applications 626</p> <p>16.6 Once-Through Industrial Water Heating 628</p> <p>16.7 Recirculating Industrial Water Heating 630</p> <p>16.8 Shallow-Pond Water Heaters 632</p> <p>16.9 Summary 634</p> <p>References 634</p> <p><b>17 Solar Thermal Power Systems 636</b></p> <p>17.1 Thermal Conversion Systems 636</p> <p>17.2 Gila Bend Pumping System 637</p> <p>17.3 Luz Systems 639</p> <p>17.4 Central-Receiver Systems 643</p> <p>17.5 Solar One and Solar Two Power Plants 645</p> <p>17.6 Summary 648</p> <p>References 648</p> <p><b>18 Solar Ponds: Evaporative Processes 650</b></p> <p>18.1 Salt-Gradient Solar Ponds 650</p> <p>18.2 Pond Theory 652</p> <p>18.3 Applications of Ponds 654</p> <p>18.4 Solar Distillation 655</p> <p>18.5 Evaporation 661</p> <p>18.6 Direct Solar Drying 662</p> <p>18.7 Summary 662</p> <p>References 663</p> <p><b>Part III Design Methods 665</b></p> <p><b>19 Simulations in Solar Process Design 667</b></p> <p>19.1 Simulation Programs 668</p> <p>19.2 Utility of Simulations 668</p> <p>19.3 Information from Simulations 669</p> <p>19.4 TRNSYS: Thermal Process Simulation Program 671</p> <p>19.5 Simulations and Experiments 677</p> <p>19.6 Meteorological Data 678</p> <p>19.7 Limitations of Simulations 681</p> <p>References 681</p> <p><b>20 Design of Active Systems: <i>f</i>-Chart 683</b></p> <p>20.1 Review of Design Methods 683</p> <p>20.2 The <i>f</i>-Chart Method 684</p> <p>20.3 The <i>f</i>-Chart for Liquid Systems 688</p> <p>20.4 The <i>f</i>-Chart for Air Systems 694</p> <p>20.5 Service Water Heating Systems 698</p> <p>20.6 The <i>f</i>-Chart Results 700</p> <p>20.7 Parallel Solar Energy-Heat Pump Systems 701</p> <p>20.8 Summary 705</p> <p>References 705</p> <p><b>21 Design of Active Systems by Utilizability Methods 707</b></p> <p>21.1 Hourly Utilizability 708</p> <p>21.2 Daily Utilizability 711</p> <p>21.3 The <i>𝜙</i>, <i>f</i>-Chart Method 714</p> <p>21.4 Summary 724</p> <p>References 725</p> <p><b>22 Design of Passive and Hybrid Heating Systems 726</b></p> <p>22.1 Approaches to Passive Design 726</p> <p>22.2 Solar-Load Ratio Method 727</p> <p>22.3 Unutilizability Design Method: Direct Gain 736</p> <p>22.4 Unutilizability Design Method: Collector-Storage Walls 742</p> <p>22.5 Hybrid Systems: Active Collection with Passive Storage 750</p> <p>22.6 Other Hybrid Systems 757</p> <p>22.7 Summary 758</p> <p>References 758</p> <p><b>23 Design of Photovoltaic Systems 760</b></p> <p>23.1 Photovoltaic Converters 761</p> <p>23.2 PV Generator Characteristics and Models 762</p> <p>23.3 Cell Temperature 773</p> <p>23.4 Load Characteristics and Direct-Coupled Systems 775</p> <p>23.5 Controls and Maximum Power Point Trackers 778</p> <p>23.6 Applications 779</p> <p>23.7 Design Procedures 780</p> <p>23.8 High-Flux PV Generators 786</p> <p>23.9 Summary 786</p> <p>References 787</p> <p><b>24 Wind Energy 789</b></p> <p>24.1 Introduction 789</p> <p>24.2 Wind Resource 793</p> <p>24.3 One-Dimensional Wind Turbine Model 801</p> <p>24.4 Estimating Wind Turbine Average Power and Energy Production 806</p> <p>24.5 Summary 810</p> <p>References 810</p> <p><b>Appendixes 811</b></p> <p>A Problems 811</p> <p>B Nomenclature 870</p> <p>C International System of Units 875</p> <p>D Meteorological Data 877</p> <p>Index 885</p>
<p>The late<b> JOHN A. DUFFIE</b> was Professor Emeritus of Chemical-Engineering and past Director of the Solar Energy Laboratory at the University of Wisconsin-Madison. <p><b>WILLIAM A. BECKMAN</b> is the Ouweneel-Bascom Professor Emeritus of Mechanical Engineering and Director Emeritus of the Solar Energy Laboratory at the University of Wisconsin-Madison. <p><b>NATHAN BLAIR</b> manages the Distributed Systems and Storage Group in the Strategic Energy Analysis center at the National Renewable Energy Laboratory.
<p><b>The bible of solar engineering that translates solar energy theory to practice, revised and updated</b> <p>The updated Fifth Edition of <i>Solar Engineering of Thermal Processes, Photovoltaics and Wind</i> contains the fundamentals of solar energy and explains how we get energy from the sun. The authors—noted experts on the topic—provide an introduction to the technologies that harvest, store, and deliver solar energy, such as photovoltaics, solar heaters, and cells. The book also explores the applications of solar technologies and shows how they are applied in various sectors of the marketplace. <p>The revised Fifth Edition offers guidance for using two key engineering software applications, Engineering Equation Solver (EES) and System Advisor Model (SAM). These applications aid in solving complex equations quickly and help with performing long-term or annual simulations. The new edition includes all-new examples, performance data, and photos of current solar energy applications. In addition, the chapter on concentrating solar power is updated and expanded. The practice problems in the Appendix are also updated, and instructors have access to a solutions manual through the book's companion website. This important book: <ul> <li>Covers all aspects of solar engineering from basic theory to the design of solar technology</li> <li>Offers in-depth guidance and demonstrations of Engineering Equation Solver (EES) and System Advisor Model (SAM) software</li> <li>Contains all-new examples, performance data, and photos of solar energy systems today</li> <li>Includes updated simulation problems and a solutions manual for instructors</li> </ul> <p>Written for students and practicing professionals in power and energy industries as well as those in research and government labs, <i>Solar Engineering of Thermal Processes, Photovoltaics and Wind, Fifth Edition</i> continues to be the leading solar engineering text and reference.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €