Details

Bioelectrochemical Interface Engineering


Bioelectrochemical Interface Engineering


1. Aufl.

von: R. Navanietha Krishnaraj, Rajesh K. Sani

211,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 02.09.2019
ISBN/EAN: 9781119538561
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An introduction to the fundamental concepts and rules in bioelectrochemistry and explores latest advancements in the field</b></p> <p><i>Bioelectrochemical Interface Engineering</i> offers a guide to this burgeoning interdisciplinary field. The authors—noted experts on the topic—present a detailed explanation of the field’s basic concepts, provide a fundamental understanding of the principle of electrocatalysis, electrochemical activity of the electroactive microorganisms, and mechanisms of electron transfer at electrode-electrolyte interfaces. They also explore the design and development of bioelectrochemical systems.</p> <p>The authors review recent advances in the field including: the development of new bioelectrochemical configurations, new electrode materials, electrode functionalization strategies, and extremophilic electroactive microorganisms. These current developments hold the promise of powering the systems in remote locations such as deep sea and extra-terrestrial space as well as powering implantable energy devices and controlled drug delivery. This important book:</p> <p>•    Explores the fundamental concepts and rules in bioelectrochemistry and details the latest advancements</p> <p>•    Presents principles of electrocatalysis, electroactive microorganisms, types and mechanisms of electron transfer at electrode-electrolyte interfaces, electron transfer kinetics in bioelectrocatalysis, and more</p> <p>•    Covers microbial electrochemical systems and discusses bioelectrosynthesis and biosensors, and bioelectrochemical wastewater treatment</p> <p>•    Reviews microbial biosensor, microfluidic and lab-on-chip devices, flexible electronics, and paper and stretchable electrodes</p> <p>Written for researchers, technicians, and students in chemistry, biology, energy and environmental science, <i>Bioelectrochemical Interface Engineering </i>provides a strong foundation to this advanced field by presenting the core concepts, basic principles, and newest advances.</p>
<p>List of Contributors xxi</p> <p>Preface xxix</p> <p><b>1 Electrochemical Performance Analyses of Biofilms 1<br /></b><i>J. Jayapriya and V. Ramamurthy</i></p> <p>1.1 Introduction 1</p> <p>1.2 Electrochemical Principles 1</p> <p>1.3 Cyclic Voltammetry 2</p> <p>1.4 Electrochemical Impedance Spectroscopy 7</p> <p>1.5 Electrochemical Noise (ECN) Technique 14</p> <p>1.6 Conclusion 17</p> <p>Acknowledgments 17</p> <p>References 17</p> <p>Further Reading 19</p> <p>Take‐home Message 19</p> <p>Test Yourself 19</p> <p><b>2 Direct Electron Transfer in Redox Enzymes and Microorganisms 21<br /></b><i>Sheela Berchmans and T. Balamurugan</i></p> <p>2.1 Introduction 21</p> <p>2.2 Wiring Enzymes to the Electrode Surface 22</p> <p>2.3 Wiring Microorganisms to the Electrode Surface 26</p> <p>References 30</p> <p>Take‐home Message 34</p> <p>Test Yourself 34</p> <p><b>3 Electrochemical Techniques and Applications to Characterize Single‐ and Multicellular Electric Microbial Functions 37<br /></b><i>Junki Saito, Muralidharan Murugan, Xiao Deng, Alexis Guionet, Waheed Miran, and Akihiro Okamoto</i></p> <p>3.1 Introduction to Microbial Electrochemical Functions and Processes 37</p> <p>3.2 Electrochemical Techniques Related to Single‐cell Processes 38</p> <p>3.3 Electrochemical Techniques Related to Biofilm Processes 43</p> <p>3.4 Techniques to Analyze Nanowires 45</p> <p>References 48</p> <p>Take‐home Message 52</p> <p>Test Yourself 52</p> <p><b>4 Electrochemical Analysis of Single Cells 55<br /></b><i>Maedeh Mozneb, Christine Smothers, Pablo Rodriguez, and Chen‐Zhong Li</i></p> <p>4.1 Introduction 55</p> <p>4.2 Single‐cell Analysis Applications and Current Technologies 56</p> <p>4.3 Electrochemical Methods for Single‐cell Analysis 57</p> <p>4.4 Microelectrodes for Single‐cell Analysis 62</p> <p>4.5 Electroluminescence‐based Single‐cell Measurements 69</p> <p>4.6 Lab‐on‐chip‐based Single‐cell Analysis 70</p> <p>4.7 Conclusion 71</p> <p>References 71</p> <p>Take‐home Message 75</p> <p>Test Yourself 76</p> <p><b>5 Biocorrosion 77<br /></b><i>C. Chandrasatheesh and J. Jayapriya</i></p> <p>5.1 Introduction 77</p> <p>5.2 Microorganisms Involved in Corrosion 78</p> <p>5.3 Mechanisms 80</p> <p>5.4 Biocorrosion Control Strategies 82</p> <p>5.5 Materials Vulnerable to Biocorrosion 83</p> <p>5.6 Biocorrosion of Biomedical Implants 84</p> <p>5.7 Biocorrosion Detection Techniques 85</p> <p>5.8 Conclusion 86</p> <p>Acknowledgements 86</p> <p>References 86</p> <p>Further Reading 89</p> <p>Take‐home Message 89</p> <p>Test Yourself 90</p> <p><b>6 Microbial Fuel Cells: A Sustainable Technology for Pollutant Removal and Power Generation 91<br /></b><i>Somdipta Bagchi and Manaswini Behera</i></p> <p>6.1 Introduction 91</p> <p>6.2 Microbial Fuel Cells 92</p> <p>6.3 Measuring Performance 94</p> <p>6.4 MFC Configuration 98</p> <p>6.5 Materials 100</p> <p>6.6 Limitations in MFCs 104</p> <p>6.7 Other MFC‐based Technologies 106</p> <p>6.8 Pilot‐scale MFCs 107</p> <p>References 108</p> <p>Take‐home Message 115</p> <p>Test Yourself 115</p> <p><b>7 Biophotovoltaics: Molecular Mechanisms and Applications 117<br /></b><i>Angelaalincy Maria Joseph, Sangeetha Ramalingam, Pushpalatha Selvaraj, Komal Rani, Kalpana Ramaraju, Gunaseelan Sathaiah, Ashokkumar Balasubramaniem, and Varalakshmi Perumal</i></p> <p>7.1 Introduction 117</p> <p>7.2 Photocurrent Generation with Biological Catalysts 118</p> <p>7.3 Photosynthetic Microbes as Photobioelectrocatalysts in BESs 119</p> <p>7.4 Biocatalysts of Photosynthetic Organisms 119</p> <p>7.5 Electron Transfer in Microalgae During Photosynthesis (Light Reaction) 120</p> <p>7.6 Electron Transfer Mechanisms in Purple Photosynthetic Bacteria 124</p> <p>7.7 Electron Transfer Mechanisms of Cyanobacteria 128</p> <p>7.8 Models of Solar Energy Conversion Devices 129</p> <p>7.9 Applications and Future Perspectives 131</p> <p>7.10 Conclusion 132</p> <p>References 132</p> <p>Take‐home Message 135</p> <p>Test Yourself 135</p> <p><b>8 An Insight into Plant Microbial Fuel Cells 137<br /></b><i>Pranab Jyoti Sarma and Kaustubha Mohanty</i></p> <p>8.1 Introduction 137</p> <p>8.2 Different Types of Plants and Their Bioelectricity Generation Capabilities 138</p> <p>8.3 Bioprocess Structure 139</p> <p>8.4 Variation in PMFC Types, Operating Conditions, Design, Electrodes, and Membranes Used 141</p> <p>8.5 PMFCs as New Electricity Generation Technology 142</p> <p>8.6 Challenges of PMFCs 144</p> <p>8.7 Conclusion 144</p> <p>References 144</p> <p>Take‐home Message 146</p> <p>Test Yourself 147</p> <p><b>9 Electroanalytical Techniques for Investigating Biofilms in Microbial Fuel Cells 149<br /></b><i>Smita S. Kumar, Vivek Kumar, and Suddhasatwa Basu</i></p> <p>9.1 Introduction 149</p> <p>9.2 Conventional Biofilm Investigation Techniques 151</p> <p>9.3 Electroanalytical Techniques 151</p> <p>9.4 Electrode Polarization 154</p> <p>9.5 Voltammetry (LSV) 155</p> <p>9.6 Scanning Tunneling Microscopy 159</p> <p>9.7 Electrochemical Quartz Crystal Microbalance (e‐QCM) 159</p> <p>9.8 Conclusion 160</p> <p>Acknowledgments 160</p> <p>References 160</p> <p>Take‐home Message 162</p> <p>Test Yourself 162</p> <p><b>10 Progress in Development of Electrode Materials in Microbial Fuel Cells 165<br /></b><i>Alka Pareek and S. Venkata Mohan</i></p> <p>10.1 Introduction 165</p> <p>10.2 Electrode Materials in MFCs 166</p> <p>10.3 Effect of Surface Treatment on Electrodes 176</p> <p>10.4 Conclusion 177</p> <p>Acknowledgments 177</p> <p>References 178</p> <p>Take‐home Message 185</p> <p>Test Yourself 185</p> <p><b>11 Synthetic Biology Strategies to Improve Electron Transfer Rate at the Microbe–Anode Interface in Microbial Fuel Cells 187<br /></b><i>Tian Zhang, Dipankar Ghosh, and Pier‐Luc Tremblay</i></p> <p>11.1 Introduction 187</p> <p>11.2 Extracellular Electron Transfer (EET) Mechanisms from the Microbe to the Anode 188</p> <p>11.3 Synthetic Biology Strategies to Improve the EET Rate from Microbes to Anode 193</p> <p>11.4 Synthetic Biology to Optimize Current Generation by Yeast 199</p> <p>11.5 Conclusion 200</p> <p>References 200</p> <p>Take‐home Message 207</p> <p>Test Yourself 208</p> <p><b>12 Microbial Electrolysis Cells (MECs): A Promising and Green Approach for Bioenergy and Biochemical Production from Waste Resources 209<br /></b><i>Abudukeremu Kadier, Mohd Sahaid Kalil, Pankaj Kumar Rai, Smita S. Kumar, Peyman Abdeshahian, Periyasamy Sivagurunathan, Hassimi Abu Hasan, Aidil Abdul Hamid, and Azah Mohamed</i></p> <p>12.1 Introduction 209</p> <p>12.2 Fundamentals of MEC Technology 210</p> <p>12.3 Crucial Factors Governing the Performance of MECs 212</p> <p>12.4 Current Applications of MECs 219</p> <p>12.5 Conclusion 224</p> <p>Acknowledgments 224</p> <p>References 224</p> <p>Take‐home Message 234</p> <p>Test Yourself 234</p> <p><b>13 Microbial Desalination Cells 235<br /></b><i>Swati Sharma, Ademola Hammed, and Halis Simsek</i></p> <p>13.1 Introduction 235</p> <p>13.2 Overview of Desalination Cells 236</p> <p>13.3 MDC Applications and Concepts 237</p> <p>13.4 Desalination in MDCs 239</p> <p>13.5 Different Configurations of MDCs 239</p> <p>13.6 Conclusion 246</p> <p>References 246</p> <p>Take‐home Message 248</p> <p>Test Yourself 248</p> <p><b>14 Microbially Charged Redox Flow Batteries for Bioenergy Storage 251<br /></b><i>Márcia S.S. Santos, Luciana Peixoto, Célia Dias‐Ferreira, Adélio Mendes, and M. Madalena Alves</i></p> <p>14.1 Introduction 251</p> <p>14.2 Redox Flow Batteries 251</p> <p>14.3 Organic Compounds for RFBs 256</p> <p>14.4 Coupling RFBs with Renewable Energy Production Technologies 259</p> <p>14.5 Future Perspectives 261</p> <p>14.6 Conclusion 262</p> <p>Acknowledgments 262</p> <p>References 262</p> <p>Take‐home Message 268</p> <p>Test Yourself 269</p> <p><b>15 Artificial Photosynthesis: Current Advances and Challenges 271<br /></b><i>Joanna Kargul and Małgorzata Kiliszek</i></p> <p>15.1 Introduction 271</p> <p>15.2 Basic Principles of Natural Photosynthesis 272</p> <p>15.3 Artificial Photosynthetic Systems 277</p> <p>15.4 Strategies for Improvement of Photoelectrode Performance 287</p> <p>15.5 Operational Dye‐sensitized Solar Cells and Solar‐to‐Fuel Devices 289</p> <p>15.6 Conclusion 291</p> <p>Acknowledgments 292</p> <p>References 292</p> <p>Take‐home Message 308</p> <p>Abbreviations 308</p> <p>Test Yourself 309</p> <p><b>16 Bioelectrochemical Systems for Production of Valuable Compounds 311<br /></b><i>Luciana Peixoto, Sónia G. Barbosa, M. Madalena Alves, and Maria Alcina Pereira</i></p> <p>16.1 Introduction 311</p> <p>16.2 From Electricity to Product 313</p> <p>16.3 Conclusion 318</p> <p>Acknowledgments 318</p> <p>References 318</p> <p>Take‐home Message 323</p> <p>Test Yourself 323</p> <p><b>17 Modernization of Biosensing Strategies for the Development of Lab‐on‐Chip Integrated Systems 325<br /></b><i>Sharmili Roy, Shweta J. Malode, Nagaraj P. Shetti, and Pranjal Chandra</i></p> <p>17.1 Introduction 325</p> <p>17.2 Types of Biosensors 326</p> <p>17.3 Lab‐on‐Chip Technologies 334</p> <p>17.4 Conclusion 336</p> <p>Acknowledgment 336</p> <p>References 336</p> <p>Take‐home Message 341</p> <p>Test Yourself 341</p> <p><b>18 Electrochemical Immunosensors: Working Principle, Types, Scope, Applications, and Future Prospects 343<br /></b><i>Shakila Harshavardhan, Sam Ebenezer Rajadas, Kevin Kumar Vijayakumar, Willsingh Anbu Durai, Andy Ramu, and Rajan Mariappan</i></p> <p>18.1 Introduction 343</p> <p>18.2 Immunosensors in Protein Immunoassays 345</p> <p>18.3 Types of Immunosensors 346</p> <p>18.4 Impedimetric Immunosensors 348</p> <p>18.5 Potentiometric Immunosensors 352</p> <p>18.6 Voltammetric and Amperometric Immunosensors 353</p> <p>18.7 Conductometric Immunosensors 355</p> <p>18.8 Capacitive Immunosensors 356</p> <p>18.9 Role of Nanomaterials in Immunosensors 357</p> <p>18.10 Applications of Immunosensors 358</p> <p>18.11 Conclusion 360</p> <p>References 361</p> <p>Take‐home Message 368</p> <p>Test Yourself 368</p> <p><b>19 Recent Updates on Inkjet‐Printed Sensors 371<br /></b><i>Naresh Kumar Mani, Anusha Prabhu, and Annamalai Senthil Kumar</i></p> <p>19.1 Introduction 371</p> <p>19.2 Inkjet‐Printed Electrochemical‐Based Sensors 372</p> <p>19.3 Inkjet‐Printed Colorimetric‐based Sensors 377</p> <p>19.4 Inkjet‐Printed Fluorescence‐based Sensors 378</p> <p>19.5 Other Techniques and Developed Devices 379</p> <p>19.6 Summary and Future Perspectives 381</p> <p>Acknowledgments 381</p> <p>References 381</p> <p>Take‐home Message 384</p> <p>Test Yourself 384</p> <p><b>20 Electrochemical Systems for Healthcare Applications 385<br /></b><i>Pandiaraj Manickam, Vairamani Kanagavel, Apurva Sonawane, S.P. Thipperudraswamy, and Shekhar Bhansali</i></p> <p>20.1 Introduction 385</p> <p>20.2 Point‐of‐care Sensor Systems 386</p> <p>20.3 Wearable Electrochemical Systems 393</p> <p>20.4 Implantable Electrochemical Nanodevices 401</p> <p>20.5 Conclusion 405</p> <p>Acknowledgments 405</p> <p>References 405</p> <p>Take‐home Message 409</p> <p>Test Yourself 409</p> <p><b>21 Synthetic Strategies of Nanobioconjugates for Bioelectrochemical Applications 411<br /></b><i>T. Selvamani, D. Gangadharan, and Sambandam Anandan</i></p> <p>21.1 Introduction 411</p> <p>21.2 Fabrication Processes of Nanobioconjugated Systems 412</p> <p>21.3 Applications of Nanobioconjugates 423</p> <p>21.4 Conclusion 426</p> <p>References 426</p> <p>Take‐home Message 429</p> <p>Test Yourself 429</p> <p><b>22 Electrochemical Biosensors with Nanointerface for Food, Water Quality, and Healthcare Applications 431<br /></b><i>John Bosco Balaguru Rayappan, Noel Nesakumar, Lakshmishri Ramachandra Bhat, Manju Bhargavi Gumpu, K. Jayanth Babu, and Arockia Jayalatha JBB</i></p> <p>22.1 Introduction 431</p> <p>22.2 Enzymatic Redox‐type Biosensors 440</p> <p>22.3 Water 446</p> <p>22.4 Enzymatic Inhibition–type Biosensors 452</p> <p>22.5 Water Quality 455</p> <p>22.6 Conclusion 456</p> <p>Acknowledgments 457</p> <p>References 457</p> <p>Take‐home Message 466</p> <p>Test Yourself 467</p> <p><b>23 Enzymatic Electrode–Electrolyte Interface Study During Electrochemical Sensing of Biomolecules 469<br /></b><i>Ashish Kumar, Priya Singh, and Rajiv Prakash</i></p> <p>23.1 Introduction 469</p> <p>23.2 Conducting Substrates for Sensing Applications 470</p> <p>23.3 Sensing Techniques 472</p> <p>23.4 Electrochemical Techniques for Sensing Analytes 472</p> <p>23.5 Different Modified Electrodes for Enzyme Functionalization 474</p> <p>23.6 A Plausible Mechanism of Electron Transfer: An Electrochemical Equivalent Circuit Analysis 474</p> <p>23.7 Enzyme‐less Glucose Oxidation: Off Course for a New Generation? 476</p> <p>23.8 Conclusion 477</p> <p>References 477</p> <p>Take‐home Message 483</p> <p>Test Yourself 483</p> <p><b>24 Quantum Dots for Bioelectrochemical Applications 485<br /></b><i>İlker Polatoğlu, Erdal Eroğlu, and Levent Aydın</i></p> <p>24.1 Introduction 485</p> <p>24.2 Nanotechnology 485</p> <p>24.3 Structure of QDs 486</p> <p>24.4 Characteristics of QDs 487</p> <p>24.5 Synthesis Processes 488</p> <p>24.6 Electrochemical Sensing of QDs 489</p> <p>24.7 Biosensor Technology 490</p> <p>24.8 Bioelectrochemical Applications of QDs 491</p> <p>24.9 QDs: Modeling and Optimizations 494</p> <p>24.10 Conclusion 498</p> <p>References 498</p> <p>Take‐home Message 502</p> <p>Test Yourself 502</p> <p><b>25 Enzymatic Self‐powered Biosensing Devices 505<br /></b><i>Felismina T.C. Moreira, Manuela F. Frasco, Sónia G. Barbosa, Luciana Peixoto, M. Madalena Alves, and M. Goreti F. Sales</i></p> <p>25.1 Enzymatic Fuel Cells 505</p> <p>25.2 Electron Transfer Mechanisms 505</p> <p>25.3 Enzyme Immobilization 507</p> <p>25.4 EFC‐based Biosensors 509</p> <p>25.5 Conclusion 514</p> <p>Acknowledgments 515</p> <p>References 515</p> <p>Take‐home Message 519</p> <p>Test Yourself 519</p> <p>Index 521</p>
<p><b>R.NAVANIETHA KRISHNARAJ, P<small>H</small>D</b>, is a Research Professor in the Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota. <p><b>RAJESH K. SANI, P<small>H</small>D</b>, is a Professor in the Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, South Dakota.
<p><b>AN INTRODUCTION TO THE FUNDAMENTAL CONCEPTS AND RULES IN BIOELECTROCHEMISTRY AND EXPLORES LATEST ADVANCEMENTS IN THE FIELD</b> <p><i>Bioelectrochemical Interface Engineering</i> offers a guide to this burgeoning interdisciplinary field. The authors—noted experts on the topic—present a detailed explanation of the field's basic concepts, provide a fundamental understanding of the principle of electrocatalysis, electrochemical activity of the electroactive microorganisms, and mechanisms of electron transfer at electrode-electrolyte interfaces. They also explore the design and development of bioelectrochemical systems. <p>The authors review recent advances in the field including: the development of new bioelectrochemical configurations, new electrode materials, electrode functionalization strategies, and electroactive microorganisms. These current developments hold the promise of powering the systems in remote locations such as deep sea and extra-terrestrial space as well as powering implantable energy devices and controlled drug delivery. This important book: <ul> <li>Explores the fundamental concepts and rules in bioelectrochemistry and details the latest advancements</li> <li>Presents principles of electrocatalysis, electroactive microorganisms, types and mechanisms of electron transfer at electrode-electrolyte interfaces, electron transfer kinetics in bioelectrocatalysis, and more</li> <li>Covers microbial electrochemical systems and discusses bioelectrosynthesis and biosensors, and bioelectrochemical wastewater treatment</li> <li>Reviews microbial biosensor, microfluidic and lab-on-chip devices, flexible electronics, and paper and stretchable electrodes</li> </ul> <p>Written for researchers, technicians, and students in chemistry, biology, energy and environmental science, <i>Bioelectrochemical Interface Engineering</i> provides a strong foundation to this advanced field by presenting the core concepts, basic principles, and newest advances.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €