Details

Oxide Electronics


Oxide Electronics


Wiley Series in Materials for Electronic & Optoelectronic Applications 1. Aufl.

von: Asim K. Ray

206,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 22.04.2021
ISBN/EAN: 9781119529507
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Oxide Electronics</b> <p><b>Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties</b><p><i>Oxide Electronics</i> delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter.<p>Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material.<p>Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like:<ul><li>Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces</li><li>An exploration of printable high-mobility transparent amorphous oxide semiconductors</li><li>Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics</li><li>Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs</li><li>Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors</li></ul><p>Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, <i>Oxide Electronics</i> will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.
<p>Series Preface xiii</p> <p>Preface xv</p> <p>List of Contributors xvii</p> <p><b>1 Graphene Oxide for Electronics 1<br /></b><i>Fenghua Liu, Lifeng Zhang, Lijian Wang, Binyuan Zhao and WeipingWu</i></p> <p>1.1 Introduction 1</p> <p>1.2 Synthesis and Characterizations of Graphene Oxide 2</p> <p>1.2.1 Chemical Reduction of Graphene Oxide (GO) 2</p> <p>1.2.2 Microwave Method 2</p> <p>1.2.3 Plasma Method 3</p> <p>1.2.4 Laser Method 4</p> <p>1.3 Energy Harvest Applications of Graphene Oxide 5</p> <p>1.3.1 Solar Cells 5</p> <p>1.3.2 Solar Thermal Energy Harvest Devices 7</p> <p>1.4 Energy Storage Applications of Graphene Oxide 7</p> <p>1.4.1 Supercapacitors 7</p> <p>1.4.2 Batteries 10</p> <p>1.5 Electronic Device Applications of Graphene Oxide 12</p> <p>1.6 Large Area Electronics Applications of Graphene Oxide 13</p> <p>References 16</p> <p><b>2 Flexible and Wearable Graphene-Based E-Textiles 21<br /></b><i>Nazmul Karim, Shaila Afroj, Damien Leech and Amr M. Abdelkader</i></p> <p>2.1 Introduction to Wearable E-Textiles 21</p> <p>2.2 Synthesis of Graphene Derivatives 22</p> <p>2.2.1 Graphene Oxide 22</p> <p>2.2.2 Reduced Graphene Oxide 24</p> <p>2.3 Graphene-BasedWearable E-Textiles 25</p> <p>2.3.1 Graphene-Based Textile Fibres 26</p> <p>2.3.2 Graphene-Coated Textiles 27</p> <p>2.3.3 Graphene-PrintedWearable E-Textiles 28</p> <p>2.3.3.1 Screen Printing 30</p> <p>2.3.3.2 Inkjet Printing 30</p> <p>2.4 Surface Pre- and Post-Treatment of Substrates 32</p> <p>2.5 Applications 34</p> <p>2.5.1 Sensors 34</p> <p>2.5.2 Supercapacitor 36</p> <p>2.5.3 Rechargeable Batteries 38</p> <p>2.5.4 Optoelectronics 39</p> <p>2.6 Challenges and Outlook 40</p> <p>References 41</p> <p><b>3 Magnetic Interactions in the Cubic Mott Insulators NiO, MnO, and CoO and the Related Oxides CuO and FeO 51<br /></b><i>David J. Lockwood andMichael G. Cottam</i></p> <p>3.1 Introduction 51</p> <p>3.2 Spin–Spin Interactions 52</p> <p>3.2.1 Magnetic Ordering Below <i>TN </i>52</p> <p>3.2.2 Magnetostriction 53</p> <p>3.2.3 Magnetic and Electronic Excitations 54</p> <p>3.3 Spin–Phonon Interactions 59</p> <p>3.3.1 Phonon and Magnon Temperature Dependences 60</p> <p>3.3.2 Phonon Mode Splitting Below <i>TN </i>62</p> <p>3.4 Other Related Materials 64</p> <p>3.4.1 Cupric Oxide 64</p> <p>3.4.2 Iron Monoxide 65</p> <p>3.5 Conclusions 68</p> <p>Acknowledgments 68</p> <p>References 68</p> <p><b>4 High-</b><b><i>𝜿 </i>Dielectric Oxides for Electronics 75<br /></b><i>Tong Zhang, Xiaoyang Zhang, Yi Yang and WeipingWu</i></p> <p>4.1 Introduction of High-<i>𝜅 </i>Dielectric Oxides 75</p> <p>4.1.1 Group IIIA Dielectric Oxides 77</p> <p>4.1.2 Group IIIB High-<i>𝜅 </i>Dielectric Oxides 77</p> <p>4.1.3 Group IVB High-<i>𝜅 </i>Dielectric Oxides 77</p> <p>4.2 The Deposition of High-<i>𝜅 </i>Oxide Dielectrics 78</p> <p>4.3 High-<i>𝜅 </i>Dielectric Oxides for Field-Effect Transistors 80</p> <p>4.3.1 High-<i>𝜅 </i>Dielectric Oxides for the MOSFETs 80</p> <p>4.3.2 High-<i>𝜅 </i>Dielectric Oxides for Tunnel Field-Effect Transistors 84</p> <p>4.4 High-<i>𝜅 </i>Dielectric Oxides for Memory Devices 85</p> <p>4.4.1 High-<i>𝜅 </i>Dielectric Oxides for DRAM 85</p> <p>4.4.2 High-<i>𝜅 </i>Dielectric Oxides for ReRAM 87</p> <p>References 88</p> <p><b>5 Low Temperature Growth of Germanium Oxide Nanowires by Template Based Self Assembly and their Raman Characterization 93<br /></b><i>Raisa Fabiha, Abigail Casey, Gregory Triplett and Supriyo Bandyopadhyay</i></p> <p>5.1 Introduction 93</p> <p>5.2 Synthesis 93</p> <p>5.3 Characterization 96</p> <p>5.4 Raman Measurements 96</p> <p>5.5 Conclusion 98</p> <p>References 99</p> <p><b>6 Electronic Phenomena, Electroforming, Resistive Switching, and Defect Conduction Bands in Metal-Insulator-Metal Diodes 101<br /></b><i>ThomasW. Hickmott</i></p> <p>6.1 Introduction 101</p> <p>6.2 Experimental 103</p> <p>6.3 Electroforming, Electroluminescence, and Electron Emission 104</p> <p>6.3.1 Electroforming of Al-Al2O3-Ag Diodes 104</p> <p>6.3.2 Electroluminescence from Al-Al2O3-Ag Diodes 104</p> <p>6.3.3 Electron Emission from Al-Al2O3-Ag Diodes 105</p> <p>6.3.4 VCNR, EL, and EM in Other Insulators 107</p> <p>6.3.5 Temperature Dependence of EM 108</p> <p>6.4 Electrode Effects in Resistive Switching of Nb-Nb2O5-Metal Diodes 109</p> <p>6.4.1 Resistive Switching in Nb-Nb2O5-Metal Diodes 109</p> <p>6.4.2 Resistive Switching at Low Temperatures 109</p> <p>6.4.3 Structure in <i>I-V </i>Curves of Electroformed Nb-Nb2O5-Metal Diodes 110</p> <p>6.5 Conduction, Electroluminescence, and Photoconductivity Before Electroforming MIM Diodes 112</p> <p>6.5.1 Conduction in Nb-Nb2O5-Au Diodes 112</p> <p>6.5.2 Electroluminescence in Nb-Nb2O5-Au Diodes 112</p> <p>6.5.3 Conduction and Electroluminescence in MIM Diodes with TiO2 and Ta2O5 115</p> <p>6.5.4 Photoconductivity in MIM Diodes 115</p> <p>6.6 Discussion 118</p> <p>6.6.1 Defect Conduction Bands in Amorphous Al2O3 119</p> <p>6.6.2 Defect Conduction Bands in Amorphous Nb2O5 121</p> <p>6.6.3 Defect Conduction Bands in Amorphous Insulators 123</p> <p>6.7 Summary and Conclusions 125</p> <p>References 125</p> <p><b>7 Lead Oxide as Material of Choice for Direct Conversion Detectors 129<br /></b><i>Alla Reznik and Oleksii Semeniuk</i></p> <p>7.1 Introduction 129</p> <p>7.2 Crystal Structure and Electronic Properties of PbO 130</p> <p>7.2.1 Crystal Structure of Tetragonal PbO (<i>𝛼</i>-PbO) 131</p> <p>7.2.2 Crystal Structure of Orthorhombic PbO (<i>𝛽</i>-PbO) 132</p> <p>7.2.3 Electronic Properties of <i>𝛼</i>- and <i>𝛽</i>-PbO 133</p> <p>7.3 Deposition Process of PbO Layers 135</p> <p>7.4 Charge Transport Mechanism in Lead Oxide 147</p> <p>7.4.1 Electron Transport in poly-PbO 148</p> <p>References 151</p> <p><b>8 ZnO Varistors: From Grain Boundaries to Power Applications 157<br /></b><i>Felix Greuter</i></p> <p>8.1 Introduction 157</p> <p>8.2 Manufacturing Process of ZnO Varistors 160</p> <p>8.3 Microstructure and Grain Boundaries 162</p> <p>8.4 Grain Boundary Potential Barriers 168</p> <p>8.5 The ‘Double Schottky Barrier Defect Model’ 174</p> <p>8.6 Hot Electron Effects Controlling the Breakdown Region 181</p> <p>8.7 Hot Electron Effects and Dynamic Response 185</p> <p>8.8 From Single Grain Boundaries to Microstructures and Varistor Devices 196</p> <p>8.9 Ageing and Long-Term Stability of Varistor Materials 207</p> <p>8.10 Energy Absorption Capability and High Current Impulse Stresses 218</p> <p>8.11 Summary and Outlook 223</p> <p>Acknowledgements 226</p> <p>References 226</p> <p><b>9 Fundamental Properties and Power Electronic Device Progress of Gallium Oxide 235<br /></b><i>Xuanhu Chen, Chennupati Jagadish and Jiandong Ye</i></p> <p>9.1 Introduction 235</p> <p>9.2 Electronic Properties and Defects of Ga2O3 236</p> <p>9.2.1 Bulk Crystals, Epitaxy, and n–type Doping 237</p> <p>9.2.2 Electronic Band Structure and Feasibility of p–type Doping 240</p> <p>9.2.3 Defect Behaviour in Bulk Crystals and Epitaxial Films 245</p> <p>9.3 Basic Device Characteristics 250</p> <p>9.3.1 Metal-Semiconductor Contact 250</p> <p>9.3.1.1 Barrier Formation 250</p> <p>9.3.1.2 Image-Force Lowering 252</p> <p>9.3.1.3 Carrier Transport and Breakdown 254</p> <p>9.3.2 Physics of Deep Depletion Ga2O3 MOSFETs 257</p> <p>9.3.2.1 Metal-Insulator-Semiconductor Capacitors 257</p> <p>9.3.2.2 Basic Device Characteristics of DepletionMode MOSFETs Based on Ga2O3 270</p> <p>9.3.2.3 Approaches to Enhancement-Mode <i>𝛽</i>-Ga2O3 MOSFETs 280</p> <p>9.3.3 Relevant Figure of Merit in Ga2O3 282</p> <p>9.4 Ga2O3 Schottky Rectifiers 286</p> <p>9.4.1 Edge Terminations 287</p> <p>9.4.2 Ga2O3 Schottky Rectifiers 295</p> <p>9.4.3 Ga2O3 p-n Heterojunction Diodes 301</p> <p>9.5 Ga2O3 Transistors 307</p> <p>9.5.1 Ohmic Contacts to Ga2O3 307</p> <p>9.5.2 Dielectric Materials for Ga2O3 and MOSCaps 308</p> <p>9.5.3 Lateral Ga2O3 FETs 313</p> <p>9.5.4 <i>𝛽</i>-Ga2O3 MODFETs 324</p> <p>9.5.5 Vertical Ga2O3 MOSFETs 330</p> <p>9.6 Summary 335</p> <p>References 336</p> <p><b>10 Emerging Trends, Challenges, and Applications in Solid-State Laser Cooling 353<br /></b><i>Jyothis Thomas, LauroMaia, Yannick Ledemi, YounesMessaddeq and Raman Kashyap</i></p> <p>10.1 Introduction 353</p> <p>10.2 Theory 355</p> <p>10.3 Experimental Design Considerations for Cooling 357</p> <p>10.3.1 Experimental Setups Used for Solid-state Laser Cooling 357</p> <p>10.3.1.1 Crystals 357</p> <p>10.3.1.2 Glasses 358</p> <p>10.3.1.3 Silica Glass Optical Fibres 360</p> <p>10.3.1.4 Semiconductor Nanoribbons 361</p> <p>10.3.2 Techniques to Analyse Background Absorption (<i>𝛼b</i>) Coefficient 361</p> <p>10.3.3 Temperature Measurement Techniques in Solid-State Laser Cooling 362</p> <p>10.3.3.1 Thermal Imaging 362</p> <p>10.3.3.2 Photoluminescence (PL)Thermometry 363</p> <p>10.3.3.3 Temperature Measurement Using Fibre Bragg Gratings 363</p> <p>10.3.3.4 Thermocouples 364</p> <p>10.3.3.5 Photothermal Deflection Spectroscopy (PTDS) 364</p> <p>10.3.3.6 Interferometric Technique 364</p> <p>10.4 Laser Cooling Materials and Properties 365</p> <p>10.4.1 Crystals 366</p> <p>10.4.2 Semiconductors 368</p> <p>10.4.3 Optical Fibres 370</p> <p>10.4.4 Nanocrystalline Powders 371</p> <p>10.5 Oxyfluoride Glass-Ceramics: Recent Developments in Solid-State Laser Cooling 373</p> <p>10.5.1 Earth-Doped Oxyfluoride Pseudo-Binary Glasses and Glass-Ceramics for Optical Refrigeration 375</p> <p>10.5.1.1 Materials and Methods 376</p> <p>10.5.1.2 Results and Discussion 376</p> <p>10.5.1.3 Summary on Pseudo-Binary Oxyfluoride Glass Ceramics 381</p> <p>10.6 Optical Cryocooler Devices 382</p> <p>10.7 Future Prospects and Conclusions 386</p> <p>Acknowledgements 388</p> <p>References 388</p> <p><b>11 ElectrodeMaterials for Sodium Ion Rechargeable Batteries 397<br /></b><i>TaniaMajumder, Anwesa Mukherjee, Debasish Das and S.B.Majumder</i></p> <p>11.1 Introduction – Review of the Constituents Used in Na – Ion Cells 397</p> <p>11.2 Cathode Materials for Na Ion Rechargeable Cells 397</p> <p>11.2.1 Transition Metal Oxides with Layered Structure 397</p> <p>11.2.2 Prussian Blue Analogue 398</p> <p>11.2.3 Sodium Superionic Conductors (NASICON) 399</p> <p>11.2.4 Other Cathodes 400</p> <p>11.3 Current Collectors, Binder, and Electrolyte 400</p> <p>11.4 Anode Materials for Na Ion Rechargeable Cells 401</p> <p>11.4.1 Carbonaceous Materials 401</p> <p>11.4.2 Alloying Type Anodes 401</p> <p>11.4.3 Conversion Type Anodes 402</p> <p>11.4.4 Other Anodes 402</p> <p>11.5 Outstanding Research Issues and Statement of the Problem 402</p> <p>11.6 Synthesis and Electrochemical Characterization of Electrodes 404</p> <p>11.6.1 Ilmenite NiTiO3 as Anode 404</p> <p>11.6.1.1 Synthesis and Characterization 404</p> <p>11.6.2 Electrochemical Characterization 404</p> <p>11.6.3 Electrophoretic Deposition of NiTiO3-Based Anode 406</p> <p>11.6.4 Electrochemical Performance of EPD Grown NTO Anodes 408</p> <p>11.7 Na2Ti3O7 as Anode 409</p> <p>11.7.1 Synthesis and Characterization 409</p> <p>11.7.2 Electrochemical Characterization of Pristine NaTO 410</p> <p>11.7.3 Electrochemical Performance of Carbon-Coated NaTO Anode 411</p> <p>11.7.4 Electrochemical Performance of NaTO/rGO Composite Anode 413</p> <p>11.8 PBA as Cathode 414</p> <p>11.8.1 Nickel Hexacyanoferrate (NiHCF) 415</p> <p>11.8.2 Iron Hexacyanoferrate (FeHCF) 417</p> <p>11.9 Summary and Conclusions 418</p> <p>Acknowledgement 419</p> <p>References 419</p> <p><b>12 Perovskites for Photovoltaics 423<br /></b><i>Hooman Mehdizadeh Rad, David Ompong and Jai Singh</i></p> <p>12.1 Introduction 423</p> <p>12.2 Diffusion Length 424</p> <p>12.2.1 Methodology 425</p> <p>12.2.2 Results of Simulated Diffusion Length and Discussions 427</p> <p>12.3 Open-Circuit Voltage 432</p> <p>12.3.1 Results of Open-Circuit Voltage and Discussions 433</p> <p>12.3.2 Bimolecular Recombination 436</p> <p>12.4 Influence of Density of Tail States at Interfaces 437</p> <p>12.4.1 Methods 437</p> <p>12.4.2 Results of Density of States and Discussions 441</p> <p>12.5 Conclusions 444</p> <p>References 447</p> <p><b>13 Advanced Characterizations of Oxides for Optoelectronic Applications 453<br /></b><i>U. Onwukwe, L. Anguilano and P. Sermon</i></p> <p>13.1 A Brief History of Optoelectronic Devices 453</p> <p>13.1.1 Semiconductors 454</p> <p>13.1.1.1 n-Type Extrinsic Semiconductors 455</p> <p>13.1.1.2 p-Type Extrinsic Semiconductors 456</p> <p>13.2 Interaction of Semiconductors and the Optoelectronic Phenomenon 457</p> <p>13.2.1 Direct Band Gap Semiconductors 457</p> <p>13.2.1.1 Indirect Band Gap Semiconductors 458</p> <p>13.2.2 Oxides for Optoelectronics: Introduction 459</p> <p>13.2.3 Major Types of MO for Optoelectronics 460</p> <p>13.2.3.1 ITO 460</p> <p>13.2.3.2 ZnO 460</p> <p>13.2.3.3 AZO 461</p> <p>13.2.3.4 IGZO 461</p> <p>13.2.3.5 Perovskite Oxides 462</p> <p>13.2.3.6 Reduced Graphene Oxide-Miscellaneous Materials 463</p> <p>13.2.4 Method of Preparation of Optoelectronic Structures 467</p> <p>13.2.4.1 Nanowires/Nanorods 467</p> <p>13.2.4.2 Thin Films 467</p> <p>13.2.4.3 Mixed Morphologies Fabrication 468</p> <p>13.3 Characterization Techniques and their Use for Metal Oxide Optoelectronics 470</p> <p>13.3.1 Rutherford Backscattering Spectrometry (RBS) 470</p> <p>13.3.2 Fourier-Transform Infra-Red (FTIR) 471</p> <p>13.3.2.1 Raman Spectroscopy 473</p> <p>13.3.3 Scanning Electron Microscopy (SEM) 475</p> <p>13.3.4 Transmission Electron Microscope (TEM) 477</p> <p>13.3.5 Luminescence Techniques 480</p> <p>13.3.6 X-Ray Diffraction 482</p> <p>13.4 Facilities and Case Studies 484</p> <p>13.4.1 Case Study I – Leaf Biotemplate Derived TiO2 485</p> <p>References 488</p> <p><b>14 Future Tuning Optoelectronic Oxides from the Inside: Sol-Gel (TiO2)x-(SiO2)100-x 497<br /></b><i>M.P.Worsley, J.G. Leadley, R.M.A. MacGibbon, T. Salvesen, P.A. Sermon and J.M. Charnock</i></p> <p>14.1 Introduction and Background 497</p> <p>14.1.1 Photons and Wavetrains 497</p> <p>14.1.2 Optoelectronic Oxides and Devices 497</p> <p>14.1.3 TiO2 498</p> <p>14.1.4 TiO2-SiO2 498</p> <p>14.1.5 Alkoxide and Sol-Gel Routes to TiO2-SiO2 500</p> <p>14.1.6 Miscibility and the % TiO2 (x) Added in TiO2-SiO2 500</p> <p>14.1.7 Doping of TiO2-SiO2 501</p> <p>14.1.8 Local Structure in TiO2-SiO2 501</p> <p>14.2 Hypothesis 503</p> <p>14.3 Experimental 504</p> <p>14.3.1 Materials 504</p> <p>14.3.2 Preparations 504</p> <p>14.3.3 Characterization Methods 504</p> <p>14.4 Characterization Results 505</p> <p>14.5 Discussion on Future Automated CALPHAD Design, Dip-Coating Mechanical, and High-Throughput Screening of Novel Optoelectronic Oxides and Devices 510</p> <p>14.6 Conclusions on TiO2-SiO2 Use 510</p> <p>Acknowledgements 513</p> <p>References 513</p> <p><b>15 Binary Calcia-Alumina Thin Films: Synthesis and Properties and Applications 525<br /></b><i>Asim K. Ray</i></p> <p>15.1 Introduction 525</p> <p>15.2 Structural and Physical Properties of C12A7 526</p> <p>15.2.1 Thermal Stability 528</p> <p>15.2.2 Ionic Conductivity and Mechanisms of Oxide–Ion Migration 529</p> <p>15.3 Atomic and Electronic Structure 530</p> <p>15.3.1 Synthesis of C12A7 531</p> <p>15.3.2 Single Powders 531</p> <p>15.3.3 Single Crystal 532</p> <p>15.3.4 Polycrystalline Bulk 533</p> <p>15.3.5 Thin Film 535</p> <p>15.3.6 Ion Doping in C12A7 536</p> <p>15.3.6.1 Heat Treatment in H2 Atmosphere 537</p> <p>15.3.6.2 Thermoelectricity 537</p> <p>15.4 Optical Properties 540</p> <p>15.4.1 Reflectivity 541</p> <p>15.4.2 Luminescence 542</p> <p>15.5 Applications of C12A7 543</p> <p>15.6 Summary 545</p> <p>Acknowledgements 546</p> <p>References 546</p> <p><b>16 Oxide Cathodes 553<br /></b><i>Ian Alberts</i></p> <p>16.1 Historical Aspects 553</p> <p>16.1.1 The Edison Effect 555</p> <p>16.1.2 ArthurWehnelt 555</p> <p>16.1.3 Thermionic Emission Research in the Early Twentieth Century 556</p> <p>16.1.4 Oxide Cathodes for the CRT 556</p> <p>16.2 Physics of Thermionic Emission 557</p> <p>16.2.1 Derivation of the Richardson-Dushman Equation 558</p> <p>16.2.2 Space Charge and the Child-Langmuir Law 559</p> <p>16.3 Oxide Cathode Development 560</p> <p>16.3.1 The Barium-Coated Cathode 561</p> <p>16.3.2 The Rise and Subsequent Fall of the Impregnated Cathode 562</p> <p>16.3.3 Cermet Cathodes 565</p> <p>16.3.4 State of the Art 565</p> <p>16.4 Future Trends and Ongoing Applications 567</p> <p>16.4.1 Vacuum X-Ray Tubes 568</p> <p>16.4.2 Military Telecommunications 568</p> <p>16.4.3 Klystrons 570</p> <p>16.4.4 Gyrotron 571</p> <p>16.4.5 Thermionic Energy Conversion 571</p> <p>16.4.6 Triboelectric Nanogenerators 573</p> <p>16.4.7 Frontiers in Thermionic Research: Vacuum Nanoelectronics 575</p> <p>16.4.8 Field Emission Displays (FED) 575</p> <p>16.5 Conclusion 577                                                                             </p> <p>References 577</p> <p>Index 583</p>
<p><b>Asim Ray</b>, Emeritus Professor at Brunel University London. His research focus is on organic photonics and the combination of optical and nanotechnological techniques to develop a new generation of devices. He is a fellow of the Institution of Engineering and Technology and the Institute of Physics and has published over 250 papers and served as Editor in Chief of the Institution of Engineering and Technology in the United Kingdom.</p> <p><b>Series Editors</b></p><p><b>Arthur Willoughby</b> University of Southampton, Southampton, UK</p><p><b>Peter Capper</b> Ex‐Leonardo MW Ltd, Southampton, UK</p><p><b>Safa Kasap</b> University of Saskatchewan, Saskatoon, Canada</p>
<p><b>Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties</b></p><p><i>Oxide Electronics</i> delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter.</p><p>Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material.</p><p>Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like:</p><ul><li>Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces</li><li>An exploration of printable high-mobility transparent amorphous oxide semiconductors</li><li>Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics</li><li>Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs</li><li>Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors</li></ul><p>Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, <i>Oxide Electronics</i> will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €