Details

Introduction to Robotics


Introduction to Robotics

Analysis, Control, Applications
3. Aufl.

von: Saeed B. Niku

113,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 09.12.2019
ISBN/EAN: 9781119527596
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The revised text to the analysis, control, and applications of robotics</b> </p> <p>The revised and updated third edition of <i>Introduction to Robotics: Analysis, Control, Applications</i>, offers a guide to the fundamentals of robotics, robot components and subsystems and applications. The author—a noted expert on the topic—covers the mechanics and kinematics of serial and parallel robots, both with the Denavit-Hartenberg approach as well as screw-based mechanics. In addition, the text contains information on microprocessor applications, control systems, vision systems, sensors, and actuators.  </p> <p><i>Introduction to Robotics</i> gives engineering students and practicing engineers the information needed to design a robot, to integrate a robot in appropriate applications, or to analyze a robot. The updated third edition contains many new subjects and the content has been streamlined throughout the text. The new edition includes two completely new chapters on screw-based mechanics and parallel robots. The book is filled with many new illustrative examples and includes homework problems designed to enhance learning. This important text: </p> <ul> <li>Offers a revised and updated guide to the fundamental of robotics  </li> <li>Contains information on robot components, robot characteristics, robot languages, and robotic applications </li> <li>Covers the kinematics of serial robots with Denavit-Hartenberg methodology and screw-based mechanics </li> <li>Includes the fundamentals of control engineering, including analysis and design tools </li> <li>Discusses kinematics of parallel robots </li> </ul> <p>Written for students of engineering as well as practicing engineers<i>, Introduction to Robotics, Third Edition </i>reviews the basics of robotics, robot components and subsystems, applications, and has been revised to include the most recent developments in the field. </p> <p> </p>
<p>Preface xv</p> <p>About the Companion Website xix</p> <p><b>1 Fundamentals 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 What Is a Robot? 2</p> <p>1.3 Classification of Robots 3</p> <p>1.4 What Is Robotics? 3</p> <p>1.5 History of Robotics 3</p> <p>1.6 Advantages and Disadvantages of Robots 4</p> <p>1.7 Robot Components 5</p> <p>1.8 Robot Degrees of Freedom 7</p> <p>1.9 Robot Joints 9</p> <p>1.10 Robot Coordinates 9</p> <p>1.11 Robot Reference Frames 11</p> <p>1.12 Programming Modes 12</p> <p>1.13 Robot Characteristics 13</p> <p>1.14 Robot Workspace 13</p> <p>1.15 Robot Languages 14</p> <p>1.16 Robot Applications 17</p> <p>1.17 Other Robots and Applications 23</p> <p>1.18 Collaborative Robots 28</p> <p>1.19 Social Issues 29</p> <p>1.20 Summary 30</p> <p>References 30</p> <p>Problems 32</p> <p><b>2 Kinematics of Serial Robots: Position Analysis 35</b></p> <p>2.1 Introduction 35</p> <p>2.2 Robots as Mechanisms 35</p> <p>2.3 Conventions 37</p> <p>2.4 Matrix Representation 37</p> <p>2.4.1 Representation of a Point in Space 37</p> <p>2.4.2 Representation of a Vector in Space 38</p> <p>2.4.3 Representation of a Frame at the Origin of a Fixed-Reference Frame 40</p> <p>2.4.4 Representation of a Frame Relative to a Fixed Reference Frame 41</p> <p>2.4.5 Representation of a Rigid Body 42</p> <p>2.5 Homogeneous Transformation Matrices 45</p> <p>2.6 Representation of Transformations 46</p> <p>2.6.1 Representation of a Pure Translation 46</p> <p>2.6.2 Representation of a Pure Rotation about an Axis 47</p> <p>2.6.3 Representation of Combined Transformations 50</p> <p>2.6.4 Transformations Relative to the Current (Moving) Frame 52</p> <p>2.6.5 Mixed Transformations Relative to Rotating and Reference Frames 53</p> <p>2.7 Inverse of Transformation Matrices 54</p> <p>2.8 Forward and Inverse Kinematics of Robots 59</p> <p>2.9 Forward and Inverse Kinematic Equations: Position 60</p> <p>2.9.1 Cartesian (Gantry, Rectangular) Coordinates 60</p> <p>2.9.2 Cylindrical Coordinates 61</p> <p>2.9.3 Spherical Coordinates 63</p> <p>2.9.4 Articulated Coordinates 65</p> <p>2.10 Forward and Inverse Kinematic Equations: Orientation 65</p> <p>2.10.1 Roll, Pitch, Yaw (RPY) Angles 65</p> <p>2.10.2 Euler Angles 68</p> <p>2.10.3 Articulated Joints 70</p> <p>2.11 Forward and Inverse Kinematic Equations: Position and Orientation 70</p> <p>2.12 Denavit-Hartenberg Representation of Forward Kinematic Equations of Robots 70</p> <p>2.13 The Inverse Kinematic Solution of Robots 84</p> <p>2.13.1 General Solution for Articulated Robot Arms 86</p> <p>2.14 Inverse Kinematic Programming of Robots 89</p> <p>2.15 Dual-Arm Cooperating Robots 91</p> <p>2.16 Degeneracy and Dexterity 92</p> <p>2.16.1 Degeneracy 92</p> <p>2.16.2 Dexterity 93</p> <p>2.17 The Fundamental Problem with the Denavit-Hartenberg Representation 93</p> <p>2.18 Design Projects 95</p> <p>2.18.1 Stair-Climbing Robot 96</p> <p>2.18.2 A 3-DOF Robot 96</p> <p>2.18.3 A 3-DOF Mobile Robot 98</p> <p>2.19 Summary 99</p> <p>References 99</p> <p>Problems 99</p> <p><b>3 Robot Kinematics with Screw-Based Mechanics 111</b></p> <p>3.1 Introduction 111</p> <p>3.2 What Is a Screw? 111</p> <p>3.3 Rotation about a Screw Axis 112</p> <p>3.4 Homogenous Transformations about a General Screw Axis 115</p> <p>3.5 Successive Screw-Based Transformations 119</p> <p>3.6 Forward and Inverse Position Analysis of an Articulated Robot 120</p> <p>3.7 Design Projects 127</p> <p>3.8 Summary 127</p> <p>Additional Reading 128</p> <p>Problems 128</p> <p><b>4 Kinematics Analysis of Parallel Robots 133</b></p> <p>4.1 Introduction 133</p> <p>4.2 Physical Characteristics of Parallel Robots 134</p> <p>4.3 The Denavit-Hartenberg Approach vs. the Direct Kinematic Approach 139</p> <p>4.4 Forward and Inverse Kinematics of Planar Parallel Robots 140</p> <p>4.4.1 Kinematic Analysis of a 3-RPR Planar Parallel Robot 141</p> <p>4.4.2 Kinematic Analysis of a 3-RRR Planar Parallel Robot 143</p> <p>4.5 Forward and Inverse Kinematics of Spatial Parallel Robots 147</p> <p>4.5.1 Kinematic Analysis of a Generic 6-6 Stewart-Gough Platform 147</p> <p>4.5.2 Kinematic Analysis of a Generic 6-3 Stewart-Gough Platform 152</p> <p>4.5.3 Kinematic Analysis of a 3-Axis RSS-Type Parallel Robot 154</p> <p>4.5.4 Kinematic Analysis of a 4-Axis RSS-Type Parallel Robot 160</p> <p>4.5.5 Kinematic Analysis of a 3-Axis PSS-Type Parallel Robot 167</p> <p>4.6 Other Parallel Robot Configurations 169</p> <p>4.7 Design Projects 169</p> <p>4.8 Summary 170</p> <p>References 170</p> <p>Problems 170</p> <p><b>5 Differential Motions and Velocities 173</b></p> <p>5.1 Introduction 173</p> <p>5.2 Differential Relationships 173</p> <p>5.3 The Jacobian 174</p> <p>5.4 Differential versus Large-Scale Motions 176</p> <p>5.5 Differential Motions of a Frame versus a Robot 177</p> <p>5.6 Differential Motions of a Frame 178</p> <p>5.6.1 Differential Translations 178</p> <p>5.6.2 Differential Rotations about Reference Axes 178</p> <p>5.6.3 Differential Rotation about a General Axis q 179</p> <p>5.6.4 Differential Transformations of a Frame 181</p> <p>5.7 Interpretation of the Differential Change 182</p> <p>5.8 Differential Changes between Frames 183</p> <p>5.9 Differential Motions of a Robot and Its Hand Frame 185</p> <p>5.10 Calculation of the Jacobian 185</p> <p>5.11 How to Relate the Jacobian and the Differential Operator 188</p> <p>5.12 The Inverse Jacobian 191</p> <p>5.13 Calculation of the Jacobian with Screw-Based Mechanics 197</p> <p>5.14 The Inverse Jacobian for the Screw-Based Method 206</p> <p>5.15 Calculation of the Jacobians of Parallel Robots 206</p> <p>5.15.1 The Jacobian of a Planar 3-RRR Parallel Robot 207</p> <p>5.15.2 The Jacobian of a Generic 6-6 Stewart-Gough Parallel Robot 208</p> <p>5.16 Design Projects 210</p> <p>5.16.1 The 3-DOF Robot 210</p> <p>5.16.2 The 3-DOF Mobile Robot 210</p> <p>5.17 Summary 210</p> <p>References 211</p> <p>Problems 211</p> <p><b>6 Dynamic and Force Analysis 219</b></p> <p>6.1 Introduction 219</p> <p>6.2 Lagrangian Mechanics: A Short Overview 220</p> <p>6.3 Effective Moments of Inertia 229</p> <p>6.4 Dynamic Equations for Multiple-DOF Robots 229</p> <p>6.4.1 Kinetic Energy 229</p> <p>6.4.2 Potential Energy 234</p> <p>6.4.3 The Lagrangian 234</p> <p>6.4.4 Robot’s Equations of Motion 234</p> <p>6.5 Static Force Analysis of Robots 239</p> <p>6.6 Transformation of Forces and Moments between Coordinate Frames 242</p> <p>6.7 Design Project 244</p> <p>6.8 Summary 244</p> <p>References 244</p> <p>Problems 245</p> <p><b>7 Trajectory Planning 247</b></p> <p>7.1 Introduction 247</p> <p>7.2 Path vs. Trajectory 247</p> <p>7.3 Joint-Space vs. Cartesian-Space Descriptions 248</p> <p>7.4 Basics of Trajectory Planning 249</p> <p>7.5 Joint-Space Trajectory Planning 252</p> <p>7.5.1 Third-Order Polynomial Trajectory Planning 252</p> <p>7.5.2 Fifth-Order Polynomial Trajectory Planning 255</p> <p>7.5.3 Linear Segments with Parabolic Blends 257</p> <p>7.5.4 Linear Segments with Parabolic Blends and Via Points 259</p> <p>7.5.5 Higher-Order Trajectories 260</p> <p>7.5.6 Other Trajectories 263</p> <p>7.6 Cartesian-Space Trajectories 263</p> <p>7.7 Continuous Trajectory Recording 267</p> <p>7.8 Design Project 268</p> <p>7.9 Summary 269</p> <p>References 269</p> <p>Problems 269</p> <p><b>8 Motion Control Systems 273</b></p> <p>8.1 Introduction 273</p> <p>8.2 Basic Components and Terminology 273</p> <p>8.3 Block Diagrams 274</p> <p>8.4 System Dynamics 274</p> <p>8.5 Laplace Transform 278</p> <p>8.6 Inverse Laplace Transform 281</p> <p>8.6.1 Partial Fraction Expansion When F(s) Involves Only Distinct Poles 281</p> <p>8.6.2 Partial Fraction Expansion When F(s) Involves Repeated Poles 282</p> <p>8.6.3 Partial Fraction Expansion When F(s) Involves Complex Conjugate Poles 283</p> <p>8.7 Transfer Functions 285</p> <p>8.8 Block Diagram Algebra 288</p> <p>8.9 Characteristics of First-Order Transfer Functions 290</p> <p>8.10 Characteristics of Second-Order Transfer Functions 292</p> <p>8.11 Characteristic Equation: Pole/Zero Mapping 294</p> <p>8.12 Steady-State Error 296</p> <p>8.13 Root Locus Method 298</p> <p>8.14 Proportional Controllers 303</p> <p>8.15 Proportional-Plus-Integral Controllers 306</p> <p>8.16 Proportional-Plus-Derivative Controllers 308</p> <p>8.17 Proportional-Integral-Derivative Controller (PID) 311</p> <p>8.18 Lead and Lag Compensators 313</p> <p>8.19 Bode Diagram and Frequency-Domain Analysis 313</p> <p>8.20 Open-Loop vs. Closed-Loop Applications 314</p> <p>8.21 Multiple-Input and Multiple-Output Systems 314</p> <p>8.22 State-Space Control Methodology 316</p> <p>8.23 Digital Control 320</p> <p>8.24 Nonlinear Control Systems 322</p> <p>8.25 Electromechanical Systems Dynamics: Robot Actuation and Control 323</p> <p>8.26 Design Projects 326</p> <p>8.27 Summary 327</p> <p>References 327</p> <p>Problems 327</p> <p><b>9 Actuators and Drive Systems 331</b></p> <p>9.1 Introduction 331</p> <p>9.2 Characteristics of Actuating Systems 331</p> <p>9.2.1 Nominal Characteristics – Weight, Power-to-Weight Ratio, Operating Pressure, Voltage, and Others 331</p> <p>9.2.2 Stiffness vs. Compliance 332</p> <p>9.2.3 Use of Reduction Gears 332</p> <p>9.3 Comparison of Actuating Systems 335</p> <p>9.4 Hydraulic Actuators 335</p> <p>9.5 Pneumatic Devices 337</p> <p>9.6 Electric Motors 338</p> <p>9.6.1 Fundamental Differences Between AC- and DC-Type Motors 339</p> <p>9.6.2 DC Motors 341</p> <p>9.6.3 AC Motors 344</p> <p>9.6.4 Brushless DC Motors 345</p> <p>9.6.5 Direct-Drive Electric Motors 346</p> <p>9.6.6 Servomotors 346</p> <p>9.6.7 Stepper Motors 347</p> <p>9.7 Microprocessor Control of Electric Motors 360</p> <p>9.7.1 Pulse Width Modulation 361</p> <p>9.7.2 Direction Control of DC Motors with an H-Bridge 363</p> <p>9.8 Magnetostrictive Actuators 364</p> <p>9.9 Shape-Memory Type Metals 364</p> <p>9.10 Electroactive Polymer Actuators (EAPs) 364</p> <p>9.11 Speed Reduction 365</p> <p>9.12 Other Systems 367</p> <p>9.13 Design Projects 367</p> <p>9.14 Summary 370</p> <p>References 371</p> <p>Problems 372</p> <p><b>10 Sensors 375</b></p> <p>10.1 Introduction 375</p> <p>10.2 Sensor Characteristics 375</p> <p>10.3 Sensor Utilization 377</p> <p>10.4 Position Sensors 378</p> <p>10.4.1 Potentiometers 378</p> <p>10.4.2 Encoders 379</p> <p>10.4.3 Linear Variable Differential Transformer (LVDT) 382</p> <p>10.4.4 Resolvers 383</p> <p>10.4.5 (Linear) Magnetostrictive Displacement Transducer (LMDT or MDT) 383</p> <p>10.4.6 Hall-effect Sensors 384</p> <p>10.4.7 Global Positioning System (GPS) 384</p> <p>10.4.8 Other Devices 385</p> <p>10.5 Velocity Sensors 385</p> <p>10.5.1 Encoders 385</p> <p>10.5.2 Tachometers 385</p> <p>10.5.3 Differentiation of Position Signal 386</p> <p>10.6 Acceleration Sensors 386</p> <p>10.7 Force and Pressure Sensors 386</p> <p>10.7.1 Piezoelectric 386</p> <p>10.7.2 Force-Sensing Resistor 386</p> <p>10.7.3 Strain Gauge 387</p> <p>10.7.4 Antistatic Foam 388</p> <p>10.8 Torque Sensors 388</p> <p>10.9 Microswitches 389</p> <p>10.10 Visible Light and Infrared Sensors 389</p> <p>10.11 Touch and Tactile Sensors 390</p> <p>10.12 Proximity Sensors 391</p> <p>10.12.1 Magnetic Proximity Sensors 391</p> <p>10.12.2 Optical Proximity Sensors 391</p> <p>10.12.3 Ultrasonic Proximity Sensors 392</p> <p>10.12.4 Inductive Proximity Sensors 392</p> <p>10.12.5 Capacitive Proximity Sensors 393</p> <p>10.12.6 Eddy Current Proximity Sensors 393</p> <p>10.13 Range Finders 393</p> <p>10.13.1 Ultrasonic Range Finders 394</p> <p>10.13.2 Light-Based Range Finders 395</p> <p>10.14 Sniff Sensors 396</p> <p>10.15 Vision Systems 396</p> <p>10.16 Voice-Recognition Devices 396</p> <p>10.17 Voice Synthesizers 397</p> <p>10.18 Remote Center Compliance (RCC) Device 397</p> <p>10.19 Design Project 400</p> <p>10.20 Summary 400</p> <p>References 401</p> <p><b>11 Image Processing and Analysis with Vision Systems 403</b></p> <p>11.1 Introduction 403</p> <p>11.2 Basic Concepts 403</p> <p>11.2.1 Image Processing vs. Image Analysis 403</p> <p>11.2.2 Two- and Three-Dimensional Image Types 403</p> <p>11.2.3 The Nature of an Image 404</p> <p>11.2.4 Acquisition of Images 405</p> <p>11.2.5 Digital Images 405</p> <p>11.2.6 Frequency Domain vs. Spatial Domain 406</p> <p>11.3 Fourier Transform and Frequency Content of a Signal 406</p> <p>11.4 Frequency Content of an Image: Noise and Edges 409</p> <p>11.5 Resolution and Quantization 410</p> <p>11.6 Sampling Theorem 412</p> <p>11.7 Image-Processing Techniques 415</p> <p>11.8 Histograms of Images 415</p> <p>11.9 Thresholding 418</p> <p>11.10 Spatial Domain Operations Convolution Mask 419</p> <p>11.11 Connectivity 424</p> <p>11.12 Noise Reduction 426</p> <p>11.12.1 Neighborhood Averaging with Convolution Masks 427</p> <p>11.12.2 Image Averaging 428</p> <p>11.12.3 Frequency Domain 429</p> <p>11.12.4 Median Filters 429</p> <p>11.13 Edge Detection 430</p> <p>11.14 Sharpening an Image 436</p> <p>11.15 Hough Transform 437</p> <p>11.16 Segmentation 440</p> <p>11.17 Segmentation by Region Growing and Region Splitting 441</p> <p>11.18 Binary Morphology Operations 444</p> <p>11.18.1 Thickening Operation 446</p> <p>11.18.2 Dilation 446</p> <p>11.18.3 Erosion 447</p> <p>11.18.4 Skeletonization 447</p> <p>11.18.5 Open Operation 448</p> <p>11.18.6 Close Operation 448</p> <p>11.18.7 Fill Operation 448</p> <p>11.19 Gray Morphology Operations 449</p> <p>11.19.1 Erosion 449</p> <p>11.19.2 Dilation 449</p> <p>11.20 Image Analysis 449</p> <p>11.21 Object Recognition by Features 450</p> <p>11.21.1 Basic Features Used for Object Identification 450</p> <p>11.21.2 Moments 451</p> <p>11.21.3 Template Matching 456</p> <p>11.21.4 Discrete Fourier Descriptors 456</p> <p>11.21.5 Computed Tomography (CT) 457</p> <p>11.22 Depth Measurement with Vision Systems 457</p> <p>11.22.1 Scene Analysis vs. Mapping 457</p> <p>11.22.2 Range Detection and Depth Analysis 458</p> <p>11.22.3 Stereo Imaging 458</p> <p>11.22.4 Scene Analysis with Shading and Sizes 459</p> <p>11.23 Specialized Lighting 459</p> <p>11.24 Image Data Compression 460</p> <p>11.24.1 Intraframe Spatial Domain Techniques 460</p> <p>11.24.2 Interframe Coding 461</p> <p>11.24.3 Compression Techniques 461</p> <p>11.25 Color Images 462</p> <p>11.26 Heuristics 462</p> <p>11.27 Applications of Vision Systems 462</p> <p>11.28 Design Project 463</p> <p>11.29 Summary 464</p> <p>References 464</p> <p>Problems 465</p> <p><b>12 Fuzzy Logic Control 475</b></p> <p>12.1 Introduction 475</p> <p>12.2 Fuzzy Control: What Is Needed 476</p> <p>12.3 Crisp Values vs. Fuzzy Values 476</p> <p>12.4 Fuzzy Sets: Degrees of Truth and Membership 477</p> <p>12.5 Fuzzification 477</p> <p>12.6 Fuzzy Inference Rules 480</p> <p>12.7 Defuzzification 481</p> <p>12.7.1 Center of Gravity Method 481</p> <p>12.7.2 Mamdani Inference Method 481</p> <p>12.8 Simulation of a Fuzzy Logic Controller 485</p> <p>12.9 Applications of Fuzzy Logic in Robotics 487</p> <p>12.10 Design Project 488</p> <p>12.11 Summary 489</p> <p>References 489</p> <p>Problems 490</p> <p>Appendix A 491</p> <p>Appendix B 499</p> <p>Index 501</p>
<p><b>SAEED BENJAMIN NIKU, P<small>H</small>D, P.E.,</b> is a Professor of Mechanical Engineering at California Polytechnic State University, San Luis Obispo, California. He has taught courses in mechanics, robotics, design, and creativity.
<p><b>The revised text to the analysis, control, and applications of robotics</b> <p>The revised and updated third edition of <i>Introduction to Robotics: Analysis, Control, Applications</i> offers a guide to the fundamentals of robotics, robot components and subsystems and applications. The author—a noted expert on the topic—covers the mechanics and kinematics of serial and parallel robots, both with the Denavit-Hartenberg approach as well as screw-based mechanics. In addition, the text contains information on microprocessor applications, control systems, vision systems, sensors, and actuators. <p><i>Introduction to Robotics</i> gives engineering students and practicing engineers the information needed to design a robot, to integrate a robot in appropriate applications, or to analyze a robot. The updated third edition contains many new subjects and the content has been streamlined throughout the text. The new edition includes two completely new chapters on screw-based mechanics and parallel robots. The book is filled with many new illustrative examples and includes homework problems designed to enhance learning. This important text: <ul> <li>Offers a revised and updated guide to the fundamentals of robotics</li> <li>Contains information on robot components, robot characteristics, robot languages, and robotic applications</li> <li>Covers the kinematics of serial robots with Denavit-Hartenberg methodology and screw-based mechanics</li> <li>Includes the fundamentals of control engineering, including analysis and design tools</li> <li>Discusses kinematics of parallel robots</li> </ul> <p>Written for students of engineering as well as practicing engineers, <i>Introduction to Robotics, Third Edition</i> reviews the basics of robotics, robot components and subsystems, applications, and has been revised to include the most recent developments in the field.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €