Details

Theory of Solid-Propellant Nonsteady Combustion


Theory of Solid-Propellant Nonsteady Combustion


Wiley-ASME Press Series 1. Aufl.

von: Vasily B. Novozhilov, Boris V. Novozhilov

121,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 21.08.2020
ISBN/EAN: 9781119525646
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Despite significant developments and widespread theoretical and practical interest in the area of Solid-Propellant Nonsteady Combustion for the last fifty years, a comprehensive and authoritative text on the subject has not been available. Theory of Solid-Propellant Nonsteady Combustion fills this gap by summarizing theoretical approaches to the problem within the framework of the Zeldovich-Novozhilov (ZN-) theory. This book contains equations governing unsteady combustion and applies them systematically to a wide range of problems of practical interest. Theory conclusions are validated, as much as possible, against available experimental data. Theory of Solid-Propellant Nonsteady Combustion provides an accurate up-to-date account and perspectives on the subject and is also accompanied by a website hosting solutions to problems in the book.
<p>About the Authors</p> <p>Preface</p> <p>Abbreviations</p> <p><b>CHAPTER I STEADY-STATE COMBUSTION </b></p> <p>1.1  General Characteristics of Solid Propellants</p> <p>1.2  Burning Rate and Surface Temperature</p> <p>1.3  Combustion Wave Structure.Burning temperature</p> <p>1.4  Combustion in Tangential Gas Stream </p> <p>1.5  Gaseous flame</p> <p>1.6  Combustion Wave in Condensed Phase</p> <p>1.7 The Two Approaches to the Theory of Nonsteady Propellant Combustion</p> <p>1.8  Steady-State Belyaev Model</p> <p><b>CHAPTER II EQUATIONS OF THE THEORY OF NONSTEADY COMBUSTION </b></p> <p>2.1  Major Assumptions</p> <p>2.2  Zeldovich Theory. Constant Surface Temperature</p> <p>2.3  Variable Surface Temperature</p> <p>2.4  Integral Formulation of the Theory</p> <p>2.5  Theory Formulation through the set of Ordinary Differential Equations</p> <p>2.6  Linear Approximation</p> <p>2.7  Formal Mathematical Justification of the Theory</p> <p><b>CHAPTER III  COMBUSTION UNDER CONSTANT PRESSURE </b></p> <p>3.1  Stability Criterion for a Steady-state Combustion Regime</p> <p>3.2  Asymptotical Perturbation Analysis</p> <p>3.3  Two-dimensional Combustion Stability of Gasless Systems</p> <p>3.4  Combustion Beyond Stability Region</p> <p>3.5  Comparison to Experimental Data</p> <p><b>CHAPTER IV  COMBUSTION UNDER HARMONICALLY OSCILLATING PRESSURE </b></p> <p>4.1  Linear Burning Rate Response to Harmonically Oscillating Pressure</p> <p>4.2  Acoustic Admittance of Propellant Surface</p> <p>4.3  Quadratic Response Functions</p> <p>4.4  Acoustic Admittance in the Second-order Approximation</p> <p>4.5  Nonlinear Resonance</p> <p>4.6  Response Function Bifurcations</p> <p>4.7  Frequency – Amplitude Diagram</p> <p>4.8  Comparison to Experimental Data</p> <p><b>CHAPTER V  NONSTEADY EROSIVE COMBUSTION </b></p> <p>5.1  Problem formulation</p> <p>5.2  Linear Approximation</p> <p>5.3  Nonlinear Effects in Nonsteady Erosive Combustion</p> <p><b>CHAPTER VI  NONSTEADY COMBUSTION UNDER EXTERNAL RADIATION</b></p> <p>6.1  Steady-state Combustion Regime</p> <p>6.2  Heat Transfer Equation in the Linear Approximation</p> <p>6.3  Linearization of Nonsteady Burning Laws</p> <p>6.4  Steady-state Combustion Regime Stability</p> <p>6.5  Burning Rate Response to Harmonically Oscillating Pressure</p> <p>6.6  Burning Rate Response to Harmonically Oscillating Radiative Flux</p> <p>6.7  Relation between Burning Rate Responses to Harmonically Oscillating Pressure and Radiative Flux</p> <p><b>CHAPTER VII NON-ACOUSTIC COMBUSTION REGIMES. EXTINCTION</b></p> <p>7.1  Acoustic and Non-acoustic Combustion Regimes</p> <p>7.2  Linear Approximation</p> <p>7.3  Approximate Approach in the Theory of Nonsteady Combustion</p> <p>7.4  Self-similar Solution</p> <p>7.5  Self-similar Solution Stability</p> <p>7.6 Propellant Combustion and Extinction under Depressurization.      </p> <p>Constant Surface Temperature.</p> <p>7.7  Propellant Combustion and Extinction under Depressurization.   </p> <p>Variable Surface Temperature.</p> <p><b>CHAPTER VIII MODELING NONSTEADY COMBUSTION IN SOLID ROCKET MOTOR</b></p> <p>8.1  Introduction</p> <p>8.2  Non-acoustic Regimes. Problem Formulation</p> <p>8.3  Stability of Steady-state Regime in a Semi-enclosed Volume</p> <p>8.4  Transient Regimes</p> <p>8.5  Unstable and Chaotic Regimes</p> <p>8.6  Experimental Data</p> <p>8.7  Acoustic Regimes</p> <p>8.8  Automatic Control of Propellant Combustion Stability in a Semi-       enclosed Volume</p> <p><b>CHAPTER IX INFLUENCE OF GAS-PHASE INERTIA ON NONSTEADY COMBUSTION</b></p> <p>9.1  Introduction</p> <p>9.2  Steady-state Combustion Regime Stability</p> <p>9.3  Burning Rate Response to Harmonically Oscillating Pressure</p> <p>9.4  Acoustic Admittance of Propellant Surface</p> <p>9.5  Combustion and Extinction under Depressurization</p> <p>9.6   approximation</p> <p>References</p> <p>Problems</p> <p>Problem Solutions</p> <p>Subject Index</p>
<p><b>Professor Boris V. Novozhilov</b> (1930-2017), Chief Researcher, The Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow. <p><b>Professor Vasily B. Novozhilov,</b> Professor of Mathematics, Discipline of Science, Research Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne Victoria, Australia.
<p><b>Theory of Solid-Propellant Nonsteady Combustion</b> <p><b>The leading theoretical examination of solid-propellant nonsteady combustion</b> <p><i>Theory of Solid-Propellant Nonsteady Combustion</i> is the first authoritative and comprehensive monograph on the subject available to researchers and students of the field. This book contains equations governing unsteady combustion and applies them systematically to a wide range of practical problems. Theory conclusions are validated, as much as possible, against available experimental data. <i>Theory of Solid-Propellant Nonsteady Combustion</i> provides an accurate, up-to-date account of the subject. It is also accompanied by a website which provides solutions to the exercises found in the book. <p>Co-authored by one of the creators of the Zeldovich – Novozhilov Theory the book includes, among others, discussions of: <ul> <li>Combustion properties of solid propellants</li> <li>Fundamentals and mathematical formulation of the Zeldovich – Novozhilov (ZN) Theory</li> <li>Combustion in steady and unsteady pressure environments</li> <li>Combustion beyond stability region</li> <li>Acoustic and non-acoustic combustion regimes, including extinction</li> <li>Extension of the Theory beyond conventional ZN approximations</li> </ul> <p>Perfect for researchers and practitioners in the aerospace industry and graduate students in mechanical and aerospace engineering, this text provides a complete, fundamental, and invaluable resource to all those who work and study in the area.

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €