Details

Optical Properties of Materials and Their Applications


Optical Properties of Materials and Their Applications


Wiley Series in Materials for Electronic & Optoelectronic Applications 2. Aufl.

von: Jai Singh, Peter Capper, Arthur Willoughby, Safa O. Kasap

226,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.11.2019
ISBN/EAN: 9781119506058
Sprache: englisch
Anzahl Seiten: 672

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems</b></p> <p>Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications.</p> <p><i>Optical Properties of Materials and Their Applications, 2nd Edition</i> starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more.</p> <ul> <li>Covers all of the fundamentals and applications of optical properties of materials</li> <li>Includes theory, experimental techniques, and current and developing applications</li> <li>Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry</li> <li>Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials</li> <li>Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories</li> </ul> <p><i>Optical Properties of Materials and Their Applications, 2nd Edition</i> is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.</p>
<p>List of Contributors xv</p> <p>Series Preface xvii</p> <p>Preface xix</p> <p><b>1 Fundamental Optical Properties of Materials I 1<br /></b><i>S.O. Kasap, W.C. Tan, Jai Singh, and Asim K. Ray</i></p> <p>1.1 Introduction 1</p> <p>1.2 Optical Constants <i>n </i>and <i>K </i>2</p> <p>1.2.1 Refractive Index and Extinction Coefficient 2</p> <p>1.2.2 <i>n </i>and <i>K</i>, and Kramers–Kronig Relations 5</p> <p>1.3 Refractive Index and Dispersion 7</p> <p>1.3.1 Cauchy Dispersion Relation 7</p> <p>1.3.2 Sellmeier Equation 8</p> <p>1.3.3 Refractive Index of Semiconductors 10</p> <p>1.3.3.1 Refractive Index of Crystalline Semiconductors 10</p> <p>1.3.3.2 Bandgap and Temperature Dependence 11</p> <p>1.3.4 Refractive Index of Glasses 11</p> <p>1.3.5 Wemple–DiDomenico Dispersion Relation 14</p> <p>1.3.6 Group Index 15</p> <p>1.4 The Swanepoel Technique: Measurement of <i>n </i>and <i>𝛼 </i>for Thin Films on Substrates 16</p> <p>1.4.1 Uniform Thickness Films 16</p> <p>1.4.2 Thin Films with Non-uniform Thickness 22</p> <p>1.5 Transmittance and Reflectance of a Partially Transparent Plate 25</p> <p>1.6 Optical Properties and Diffuse Reflection: Schuster–Kubelka–Munk Theory 27</p> <p>1.7 Conclusions 31</p> <p>Acknowledgments 31</p> <p>References 32</p> <p><b>2 Fundamental Optical Properties of Materials II 37<br /></b><i>S.O. Kasap, K. Koughia, Jai Singh, Harry E. Ruda, and Asim K. Ray</i></p> <p>2.1 Introduction 37</p> <p>2.2 Lattice or Reststrahlen Absorption and Infrared Reflection 40</p> <p>2.3 Free Carrier Absorption (FCA) 42</p> <p>2.4 Band-to-Band or Fundamental Absorption (Crystalline Solids) 45</p> <p>2.5 Impurity Absorption and Rare-Earth Ions 48</p> <p>2.6 Effect of External Fields 54</p> <p>2.6.1 Electro-Optic Effects 54</p> <p>2.6.2 Electro-Absorption and Franz–Keldysh Effect 55</p> <p>2.6.3 Faraday Effect 56</p> <p>2.7 Effective Medium Approximations 58</p> <p>2.8 Conclusions 61</p> <p>Acknowledgments 61</p> <p>References 62</p> <p><b>3 Optical Properties of Disordered Condensed Matter 67<br /></b><i>Koichi Shimakawa, Jai Singh, and S.K. O’Leary</i></p> <p>3.1 Introduction 67</p> <p>3.2 Fundamental Optical Absorption (Experimental) 69</p> <p>3.2.1 Amorphous Chalcogenides 69</p> <p>3.2.2 Hydrogenated Nano-Crystalline Silicon (nc-Si:H) 72</p> <p>3.3 Absorption Coefficient (Theory) 74</p> <p>3.4 Compositional Variation of the Optical Bandgap 79</p> <p>3.4.1 In Amorphous Chalcogenides 79</p> <p>3.5 Conclusions 80</p> <p>References 80</p> <p><b>4 Optical Properties of Glasses 83<br /></b><i>Andrew Edgar</i></p> <p>4.1 Introduction 83</p> <p>4.2 The Refractive Index 84</p> <p>4.3 Glass Interfaces 86</p> <p>4.4 Dispersion 88</p> <p>4.5 Sensitivity of the Refractive Index 90</p> <p>4.5.1 Temperature Dependence 90</p> <p>4.5.2 Stress Dependence 91</p> <p>4.5.3 Magnetic Field Dependence—The Faraday Effect 92</p> <p>4.5.4 Chemical Perturbations—Molar Refractivity 94</p> <p>4.6 Glass Color 95</p> <p>4.6.1 Coloration by Colloidal Metals and Semiconductors 95</p> <p>4.6.2 Optical Absorption in Rare-Earth-Doped Glass 96</p> <p>4.6.3 Absorption by 3d Metal Ions 99</p> <p>4.7 Fluorescence in Rare-Earth-Doped Glass 102</p> <p>4.8 Glasses for Fiber Optics 104</p> <p>4.9 Refractive Index Engineering 106</p> <p>4.10 Glass and Glass–Fiber Lasers and Amplifiers 109</p> <p>4.11 Valence Change Glasses 111</p> <p>4.12 Transparent Glass Ceramics 114</p> <p>4.12.1 Introduction 114</p> <p>4.12.2 Theoretical Basis for Transparency 116</p> <p>4.12.3 Rare-Earth-Doped Transparent Glass Ceramics for Active Photonics 120</p> <p>4.12.4 Ferroelectric Transparent Glass Ceramics 121</p> <p>4.12.5 Transparent Glass Ceramics for X<b>-</b>ray Storage Phosphors 121</p> <p>4.13 Conclusions 124</p> <p>References 124</p> <p><b>5 Concept of Excitons 129<br /></b><i>Jai Singh, Harry E. Ruda, M.R. Narayan, and D. Ompong</i></p> <p>5.1 Introduction 129</p> <p>5.2 Excitons in Crystalline Solids 130</p> <p>5.2.1 Excitonic Absorption in Crystalline Solids 133</p> <p>5.3 Excitons in Amorphous Semiconductors 135</p> <p>5.3.1 Excitonic Absorption in Amorphous Solids 137</p> <p>5.4 Excitons in Organic Semiconductors 139</p> <p>5.4.1 Photoexcitation and Formation of Excitons 140</p> <p>5.4.1.1 Photoexcitation of Singlet Excitons Due to Exciton–Photon Interaction 141</p> <p>5.4.1.2 Excitation of Triplet Excitons 142</p> <p>5.4.2 Exciton Up-Conversion 147</p> <p>5.4.3 Exciton Dissociation 148</p> <p>5.4.3.1 Conversion from Frenkel to CT Excitons 151</p> <p>5.4.3.2 Dissociation of CT Excitons 152</p> <p>5.5 Conclusions 153</p> <p>References 154</p> <p><b>6 Photoluminescence 157<br /></b><i>Takeshi Aoki</i></p> <p>6.1 Introduction 157</p> <p>6.2 Fundamental Aspects of Photoluminescence (PL) in Materials 158</p> <p>6.2.1 Intrinsic Photoluminescence 159</p> <p>6.2.2 Extrinsic Photoluminescence 160</p> <p>6.2.3 Up-Conversion Photoluminescence (UCPL) 162</p> <p>6.2.4 Other Related Optical Transitions 163</p> <p>6.3 Experimental Aspects 164</p> <p>6.3.1 Static PL Spectroscopy 164</p> <p>6.3.2 Photoluminescence Excitation Spectroscopy (PLE) and Photoluminescence Absorption Spectroscopy (PLAS) 167</p> <p>6.3.3 Time Resolved Spectroscopy (TRS) 168</p> <p>6.3.4 Time-Correlated Single Photon Counting (TCSPC) 171</p> <p>6.3.5 Frequency-Resolved Spectroscopy (FRS) 172</p> <p>6.3.6 Quadrature Frequency Resolved Spectroscopy (QFRS) 173</p> <p>6.4 Photoluminescence Lifetime Spectroscopy of Amorphous Semiconductors by QFRS Technique 175</p> <p>6.4.1 Overview 175</p> <p>6.4.2 Dual-Phase Double Lock-in (DPDL) QFRS Technique 176</p> <p>6.4.3 Exploring Broad PL Lifetime Distribution in a-Si:H by Wideband QFRS 178</p> <p>6.4.3.1 Effects of Excitation Intensity, Excitation, and Emission Energies 179</p> <p>6.4.3.2 Temperature Dependence 184</p> <p>6.4.3.3 Effect of Electric and Magnetic Fields 185</p> <p>6.4.4 Residual PL Decay of a-Si:H 189</p> <p>6.5 QFRS on Up-Conversion Photoluminescence (UCPL) of RE-Doped Materials 192</p> <p>6.6 Conclusions 197</p> <p>Acknowledgments 198</p> <p>References 198</p> <p><b>7 Photoluminescence, Photoinduced Changes, and Electroluminescence in Noncrystalline Semiconductors 203<br /></b><i>Jai Singh</i></p> <p>7.1 Introduction 203</p> <p>7.2 Photoluminescence 205</p> <p>7.2.1 Radiative Recombination Operator and Transition Matrix Element 206</p> <p>7.2.2 Rates of Spontaneous Emission 211</p> <p>7.2.2.1 At Nonthermal Equilibrium 212</p> <p>7.2.2.2 At Thermal Equilibrium 214</p> <p>7.2.2.3 Determining <i>E</i><sub>0</sub> 215</p> <p>7.2.3 Results of Spontaneous Emission and Radiative Lifetime 216</p> <p>7.2.4 Temperature Dependence of PL 222</p> <p>7.2.5 Excitonic Concept 223</p> <p>7.3 Photoinduced Changes in Amorphous Chalcogenides 225</p> <p>7.3.1 Effect of Photo-Excitation and Phonon Interaction 226</p> <p>7.3.2 Excitation of a Single Electron–Hole Pair 228</p> <p>7.3.3 Pairing of Like Excited Charge Carriers 229</p> <p>7.4 Radiative Recombination of Excitons in Organic Semiconductors 232</p> <p>7.4.1 Rate of Fluorescence 233</p> <p>7.4.2 Rate of Phosphorescence 233</p> <p>7.4.3 Organic Light Emitting Diodes (OLEDs) 234</p> <p>7.4.3.1 Second- and Third-Generation OLEDs: TADF 235</p> <p>7.5 Conclusions 236</p> <p>Acknowledgments 236</p> <p>References 237</p> <p><b>8 Photoinduced Bond Breaking and Volume Change in Chalcogenide Glasses 241<br /></b><i>Sandor Kugler, Rozália Lukács, and Koichi Shimakawa</i></p> <p>8.1 Introduction 241</p> <p>8.2 Atomic-Scale Computer Simulations of Photoinduced Volume Changes 243</p> <p>8.3 Effect of Illumination 244</p> <p>8.4 Kinetics of Volume Change 245</p> <p>8.4.1 a-Se 245</p> <p>8.4.2 a-As<sub>2</sub>Se<sub>3</sub> 246</p> <p>8.5 Additional Remarks 248</p> <p>8.6 Conclusions 249</p> <p>References 249</p> <p><b>9 Properties and Applications of Photonic Crystals 251<br /></b><i>Harry E. Ruda and Naomi Matsuura</i></p> <p>9.1 Introduction 251</p> <p>9.2 PC Overview 252</p> <p>9.2.1 Introduction to PCs 252</p> <p>9.2.2 Nanoengineering of PC Architectures 253</p> <p>9.2.3 Materials Selection for PCs 255</p> <p>9.3 Tunable PCs 255</p> <p>9.3.1 Tuning PC Response by Changing the Refractive Index of Constituent Materials 256</p> <p>9.3.1.1 PC Refractive Index Tuning Using Light 256</p> <p>9.3.1.2 PC Refractive Index Tuning Using an Applied Electric Field 256</p> <p>9.3.1.3 Refractive Index Tuning of Infiltrated PCs 257</p> <p>9.3.1.4 PC Refractive Index Tuning by Altering the Concentration of Free Carriers (Using Electric Field or Temperature) in Semiconductor-Based PCs 257</p> <p>9.3.2 Tuning PC Response by Altering the Physical Structure of the PC 258</p> <p>9.3.2.1 Tuning PC Response Using Temperature 258</p> <p>9.3.2.2 Tuning PC Response Using Magnetism 258</p> <p>9.3.2.3 Tuning PC Response Using Strain 258</p> <p>9.3.2.4 Tuning PC Response Using Piezoelectric Effects 259</p> <p>9.3.2.5 Tuning PC Response Using MEMS Actuation 260</p> <p>9.4 Selected Applications of PC 260</p> <p>9.4.1 Waveguide Devices 261</p> <p>9.4.2 Dispersive Devices 262</p> <p>9.4.3 Add/Drop Multiplexing Devices 262</p> <p>9.4.4 Applications of PCs for Light-Emitting Diodes (LEDs) and Lasers 263</p> <p>9.5 Conclusions 265</p> <p>Acknowledgments 265</p> <p>References 265</p> <p><b>10 Nonlinear Optical Properties of Photonic Glasses 269<br /></b><i>Keiji Tanaka</i></p> <p>10.1 Introduction 269</p> <p>10.2 Photonic Glass 271</p> <p>10.3 Nonlinear Absorption and Refractivity 272</p> <p>10.3.1 Fundamentals 272</p> <p>10.3.2 Two-Photon Absorption 275</p> <p>10.3.3 Nonlinear Refractivity 278</p> <p>10.4 Nonlinear Excitation-Induced Structural Changes 280</p> <p>10.4.1 Fundamentals 280</p> <p>10.4.2 Oxides 281</p> <p>10.4.3 Chalcogenides 283</p> <p>10.5 Conclusions 285</p> <p>10.A Addendum: Perspectives on Optical Devices 286</p> <p>References 288</p> <p><b>11 Optical Properties of Organic Semiconductors 295<br /></b><i>Takashi Kobayashi and Hiroyoshi Naito</i></p> <p>11.1 Introduction 295</p> <p>11.2 Molecular Structure of π-Conjugated Polymers 296</p> <p>11.3 Theoretical Models 298</p> <p>11.4 Absorption Spectrum 300</p> <p>11.5 Photoluminescence 304</p> <p>11.6 Non-Emissive Excited States 306</p> <p>11.7 Electron–Electron Interaction 309</p> <p>11.8 Interchain Interaction 314</p> <p>11.9 Conclusions 320</p> <p>References 321</p> <p><b>12 Organic Semiconductors and Applications 323<br /></b><i>Furong Zhu</i></p> <p>12.1 Introduction 323</p> <p>12.1.1 Device Architecture and Operation Principle 324</p> <p>12.1.2 Technical Challenges and Process Integration 325</p> <p>12.2 Anode Modification for Enhanced OLED Performance 327</p> <p>12.2.1 Low-Temperature High-Performance ITO 327</p> <p>12.2.1.1 Experimental Methods 328</p> <p>12.2.1.2 Morphological Properties 329</p> <p>12.2.1.3 Electrical Properties 331</p> <p>12.2.1.4 Optical Properties 333</p> <p>12.2.1.5 Compositional Analysis 336</p> <p>12.2.2 Anode Modification 339</p> <p>12.2.3 Electroluminescence Performance of OLEDs 340</p> <p>12.3 Flexible OLEDs 345</p> <p>12.3.1 Flexible OLEDs on Ultrathin Glass Substrate 346</p> <p>12.3.2 Flexible Top-Emitting OLEDs on Plastic Foils 347</p> <p>12.3.2.1 Top-Emitting OLEDs 348</p> <p>12.3.2.2 Flexible TOLEDs on Plastic Foils 350</p> <p>12.4 Solution-Processable High-Performing OLEDs 353</p> <p>12.4.1 Performance of OLEDs with a Hybrid MoO<sub>3</sub>-PEDOT:PSS Hole Injection Layer (HIL) 353</p> <p>12.4.2 Morphological Properties of the MoO<sub>3</sub>-PEDOT:PSS HIL 361</p> <p>12.4.3 Surface Electronic Properties of MoO<sub>3</sub>-PEDOT:PSS HIL 363</p> <p>12.5 Conclusions 368</p> <p>References 369</p> <p><b>13 Transparent White OLEDs 373<br /></b><i>Choi Wing Hong and Furong Zhu</i></p> <p>13.1 Introduction—Progress in Transparent WOLEDs 373</p> <p>13.2 Performance of WOLEDs 374</p> <p>13.2.1 Optimization of Dichromatic WOLEDs 374</p> <p>13.2.2 <i>J</i>-<i>L</i>-<i>V </i>Characteristics of WOLEDs 377</p> <p>13.2.3 Electron-Hole Current Balance in Transparent WOLEDs 384</p> <p>13.3 Emission Behavior of Transparent WOLEDs 386</p> <p>13.3.1 Visible-Light Transparency of WOLEDs 386</p> <p>13.3.2 <i>L</i>-<i>J </i>Characteristics of Transparent WOLEDs 390</p> <p>13.3.3 Angular-Dependent Color Stability of Transparent WOLEDs 395</p> <p>13.4 Conclusions 400</p> <p>References 400</p> <p><b>14 Optical Properties of Thin Films 403<br /></b><i>V.-V. Truong, S. Tanemura, A. Haché, and L. Miao</i></p> <p>14.1 Introduction 403</p> <p>14.2 Optics of Thin Films 404</p> <p>14.2.1 An Isotropic Film on a Substrate 404</p> <p>14.2.2 Matrix Methods for Multi-Layered Structures 406</p> <p>14.2.3 Anisotropic Films 407</p> <p>14.3 Reflection-Transmission Photoellipsometry for Determination of Optical Constants 408</p> <p>14.3.1 Photoellipsometry of a Thick or a Thin Film 408</p> <p>14.3.2 Photoellipsometry for a Stack of Thick and Thin Films 410</p> <p>14.3.3 Remarks on the Reflection-Transmission Photoellipsometry Method 412</p> <p>14.4 Application of Thin Films to Energy Management and Renewable-Energy Technologies 412</p> <p>14.4.1 Electrochromic Thin Films 413</p> <p>14.4.2 Pure and Metal-Doped VO<sub>2</sub> Thermochromic Thin Films 414</p> <p>14.4.3 Temperature-Stabilized V<sub>1-x</sub>W<sub>x</sub>O<sub>2</sub> Sky Radiator Films 417</p> <p>14.4.4 Optical Functional TiO<sub>2</sub> Thin Film for Environmentally Friendly Technologies 420</p> <p>14.5 Application of Tunable Thin Films to Phase and Polarization Modulation 424</p> <p>14.6 Conclusions 430</p> <p>References 430</p> <p><b>15 Optical Characterization of Materials by Spectroscopic Ellipsometry 435<br /></b><i>J. Mistrík</i></p> <p>15.1 Introduction 435</p> <p>15.2 Notions of Light Polarization 436</p> <p>15.3 Measureable Quantities 438</p> <p>15.4 Instrumentation 441</p> <p>15.5 Single Interface 442</p> <p>15.6 Single Layer 448</p> <p>15.7 Multilayer 454</p> <p>15.8 Linear Grating 458</p> <p>15.9 Conclusions 462</p> <p>Acknowledgments 463</p> <p>References 463</p> <p><b>16 Excitonic Processes in Quantum Wells 465<br /></b><i>Jai Singh and I.-K. Oh</i></p> <p>16.1 Introduction 465</p> <p>16.2 Exciton–Phonon Interaction 466</p> <p>16.3 Exciton Formation in QWs Assisted by Phonons 467</p> <p>16.4 Nonradiative Relaxation of Free Excitons 474</p> <p>16.4.1 Intraband Processes 475</p> <p>16.4.2 Interband Processes 479</p> <p>16.5 Quasi-2D Free-Exciton Linewidth 485</p> <p>16.6 Localization of Free Excitons 491</p> <p>16.7 Conclusions 499</p> <p>References 500</p> <p><b>17 Optoelectronic Properties and Applications of Quantum Dots 503<br /></b><i>Jørn M. Hvam</i></p> <p>17.1 Introduction 503</p> <p>17.2 Epitaxial Growth and Structure of Quantum Dots 504</p> <p>17.2.1 Self-Assembled Quantum Dots 504</p> <p>17.2.2 Site-Controlled Growth on Patterned Substrates 505</p> <p>17.2.3 Natural or Interface Quantum Dots 506</p> <p>17.2.4 Quantum Dots in Nanowires 507</p> <p>17.3 Excitons in Quantum Dots 508</p> <p>17.3.1 Quantum-Dot Bandgap 509</p> <p>17.3.2 Optical Transitions 510</p> <p>17.4 Optical Properties 513</p> <p>17.4.1 Radiative Lifetime, Oscillator Strength, and Internal Quantum Efficiency 514</p> <p>17.4.2 Linewidth, Coherence, and Dephasing 516</p> <p>17.4.3 Transient Four-Wave Mixing 517</p> <p>17.5 Quantum Dot Applications 520</p> <p>17.5.1 Quantum Dot Lasers and Optical Amplifiers 520</p> <p>17.5.1.1 Gain Dynamics 522</p> <p>17.5.1.2 Homogeneous Broadening and Dephasing 524</p> <p>17.5.1.3 Long-Wavelength Lasers 526</p> <p>17.5.1.4 Nano Lasers 527</p> <p>17.5.2 Single-Photon Emitters 527</p> <p>17.5.2.1 Micropillars and Nanowires 530</p> <p>17.5.2.2 Photonic Crystal Waveguide 531</p> <p>17.6 Conclusions 533</p> <p>Acknowledgments 534</p> <p>References 534</p> <p><b>18 Perovskites – Revisiting the Venerable ABX3 Family with Organic Flexibility and New Applications 537<br /></b><i>Junwei Xu, D.L. Carroll, K. Biswas, F. Moretti, S. Gridin, and R.T.Williams</i></p> <p>18.1 Introduction 537</p> <p>18.1.1 Review 537</p> <p>18.1.2 The Structures 538</p> <p>18.1.2.1 Simple Cubic Frameworks 538</p> <p>18.1.2.2 The Multiplicity of Hybrids 539</p> <p>18.1.2.3 Structural Variation 540</p> <p>18.2 Hybrid Perovskites in Photovoltaics 544</p> <p>18.2.1 Review 544</p> <p>18.2.2 The Phenomena Characterized as “Defect Tolerance” 548</p> <p>18.3 Light-Emitting Diodes Using Solution-Processed Lead Halide Perovskites 549</p> <p>18.3.1 Review 549</p> <p>18.3.2 Construction and Characterization of LEDs Utilizing CsPbBr<sub>3</sub> Nano-Inclusions in Cs<sub>4</sub>PbBr<sub>6</sub> as the Electroluminescent Medium 553</p> <p>18.4 Ionizing Radiation Detectors Using Lead Halide Perovskite Materials: Basics, Progress, and Prospects 562</p> <p>18.5 Conclusions 582</p> <p>Acknowledgments 583</p> <p>References 583</p> <p><b>19 Optical Properties and Spin Dynamics of Diluted Magnetic Semiconductor Nanostructures 589<br /></b><i>Akihiro Murayama and Yasuo Oka</i></p> <p>19.1 Introduction 589</p> <p>19.2 Quantum Wells 591</p> <p>19.2.1 Spin Injection 591</p> <p>19.2.2 Study of Spin Dynamics by Pump-Probe Spectroscopy 594</p> <p>19.3 Fabrication of Nanostructures by Electron-Beam Lithography 596</p> <p>19.4 Self-Assembled Quantum Dots 599</p> <p>19.5 Hybrid Nanostructures with Ferromagnetic Materials 604</p> <p>19.6 Conclusions 607</p> <p>Acknowledgments 608</p> <p>References 609</p> <p><b>20 Kinetics of the Persistent Photoconductivity in Crystalline III-V Semiconductors 611<br /></b><i>Ruben Jeronimo Freitas and Koichi Shimakawa</i></p> <p>20.1 Introduction 611</p> <p>20.2 A Review of PPC in III-V Semiconductors 613</p> <p>20.3 Key Physical Terms Related to PPC 615</p> <p>20.3.1 Dispersive Reaction 615</p> <p>20.3.2 SEF and Power Law 616</p> <p>20.3.3 Waiting Time Distribution 617</p> <p>20.4 Kinetics of PPC in III-V Semiconductors 617</p> <p>20.5 Conclusions 623</p> <p>Acknowledgments 623</p> <p>20.A On the Reaction Rate Under the Uniform Distribution 623</p> <p>References 625</p> <p>Index 627</p>
<p>Edited by <p><b>Jai Singh, AM, PhD</b>, College of Engineering, IT and Environment, Charles Darwin University, Darwin, Australia. <p>Series Editors <p><b>Arthur Willoughby</b> University of Southampton, Southampton, UK <p><b>Peter Capper</b> formerly of Ex-Leonardo M. W. Ltd, Southampton, UK <p><b>Safa Kasap</b> University of Saskatchewan, Saskatoon, Canada
<p><b>Optical Properties of Materials and Their Applications</b></br> Second Edition <p><b>Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems</b> <p>Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. <p><i>Optical Properties of Materials and Their Applications, Second Edition</i>??starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. <ul> <li>Covers all of the fundamentals and applications of optical properties of materials</li> <li>Includes theory, experimental techniques, and current and developing applications</li> <li>Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry</li> <li>Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials</li> <li>Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories</li> </ul> <p><i>Optical Properties of Materials and Their Applications, Second Edition</i>??is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €