Details

Aquaculture Engineering


Aquaculture Engineering


3. Aufl.

von: Odd-Ivar Lekang

193,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 25.10.2019
ISBN/EAN: 9781119489030
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The revised edition of the comprehensive book that explores the principles and applications of aquaculture engineering</b></p> <p>Since the publication of the first edition of <i>Aquaculture Engineering</i> there have been many advances in the industry. The revised and thoroughly updated third edition of <i>Aquaculture Engineering</i> covers the principles and applications of all major facets of aquaculture engineering and the newest developments in the field. Written by a noted expert on the topic, the new edition highlights information on new areas of interest including RAS technology and offshore fish farming. </p> <p>Comprehensive in scope, the book examines a range of topics including: water transportation and treatment; feed and feeding systems; fish transportation and grading; cleaning and waste handling; instrumentation and monitoring; removal of particles; aeration and oxygenation; recirculation and water reuse systems; ponds; and the design and construction of aquaculture facilities. This important book:</p> <ul> <li>Presents an updated review of the basic principles and applications in aquaculture engineering</li> <li>Includes information on new areas of focus; RAS technology and offshore fish farming</li> <li>Contains a revised edition of the classic resource on aquaculture engineering</li> <li>Continues to offer an authoritative guide written by a leading expert in the field</li> </ul> <p>Written for aquaculture scientists and managers, engineers, equipment manufacturers and suppliers, and biological scientists, the third edition of <i>Aquaculture Engineering</i> is the authoritative guide to the topic that has been updated to include the most recent developments in the industry.</p>
<p>Preface xvii</p> <p><b>1 Introduction 1</b></p> <p>1.1 Aquaculture engineering 1</p> <p>1.2 Classification of aquaculture 1</p> <p>1.3 The farm: technical components in a system 2</p> <p>1.3.1 Land‐based hatchery and juvenile production farm 2</p> <p>1.3.2 On‐growing sea cage farm 4</p> <p>1.4 Future trends: increased importance of aquaculture engineering 6</p> <p>1.5 This textbook 6</p> <p>References 7</p> <p><b>2 Water Transport 9</b></p> <p>2.1 Introduction 9</p> <p>2.2 Pipe and pipe parts 9</p> <p>2.2.1 Pipes 9</p> <p>2.2.2 Valves 12</p> <p>2.2.3 Pipe parts: fittings 14</p> <p>2.2.4 Pipe connections: jointing 15</p> <p>2.2.5 Mooring of pipes 15</p> <p>2.2.6 Ditches for pipes 16</p> <p>2.3 Some basic hydrodynamics 17</p> <p>2.3.1 Boundary layer theory 17</p> <p>2.3.2 Bernoulli’s equation 18</p> <p>2.4 Water flow and head loss in channels and pipe systems 19</p> <p>2.4.1 Water flow 19</p> <p>2.4.2 Head loss in pipelines 20</p> <p>2.4.3 Head loss in single parts (fittings) 23</p> <p>2.4.4 Gravity feed pipes 23</p> <p>2.5 Pumps 26</p> <p>2.5.1 Types of pump 26</p> <p>2.5.2 Some definitions 26</p> <p>2.5.3 Pumping of water requires energy 29</p> <p>2.5.4 Centrifugal and propeller pumps 30</p> <p>2.5.5 Pump performance curves and working point for centrifugal pumps 32</p> <p>2.5.6 Change of water flow or pressure 35</p> <p>2.5.7 Regulation of flow from selected pumps 37</p> <p>References 39</p> <p><b>3 Water Quality and Water Treatment: An Introduction 41</b></p> <p>3.1 Increased focus on water quality 41</p> <p>3.2 Inlet water 41</p> <p>3.3 Outlet water 43</p> <p>3.4 Water treatment 44</p> <p>References 46</p> <p><b>4 Fish Metabolism, Water Quality and Separation Technology 47</b></p> <p>4.1 Introduction 47</p> <p>4.2 Fish metabolism 47</p> <p>4.2.1 Overview of fish metabolism 47</p> <p>4.2.2 The energy budget 49</p> <p>4.3 Separation technology 49</p> <p>4.3.1 What are the impurities in water? 50</p> <p>4.3.2 Phosphorus removal: an example 51</p> <p>References 53</p> <p><b>5 Controlling pH, Alkalinity and Hardness 55</b></p> <p>5.1 Introduction 55</p> <p>5.2 pH 55</p> <p>5.2.1 Water dissolves in water 55</p> <p>5.2.2 What is pH 56</p> <p>5.2.3 The carbonate system 57</p> <p>5.2.4 Total carbonate carbon 60</p> <p>5.2.5 Open or closed system 60</p> <p>5.2.6 A mathematical approach 63</p> <p>5.2.7 pH of different water sources 64</p> <p>5.2.8 Recommended pH for aquaculture 64</p> <p>5.3 Alkalinity 65</p> <p>5.3.1 How to avoid pH fluctuations 65</p> <p>5.3.2 Titration is necessary 65</p> <p>5.3.3 A buffer 66</p> <p>5.3.4 The term equivalent weight 68</p> <p>5.3.5 Alkalinity given as mg/L CaCO<sub>3</sub> 68</p> <p>5.3.6 Alkalinity of different water sources 69</p> <p>5.3.7 Recommended alkalinity for aquaculture 69</p> <p>5.4 Hardness 69</p> <p>5.4.1 The concentration of bivalent cations 69</p> <p>5.4.2 Hardness may lead to precipitation 70</p> <p>5.4.3 Hardness of different water sources 71</p> <p>5.4.4 Recommended hardness 71</p> <p>5.5 Chemical agents to use for regulation of pH, alkalinity and hardness 72</p> <p>5.6 Examples of methods for pH adjustment 73</p> <p>5.6.1 Lime 73</p> <p>5.6.2 Sea water 75</p> <p>5.6.3 Lye or hydroxides 76</p> <p>5.6.4 pH regulation in RAS 76</p> <p>References 77</p> <p><b>6 Removal of Particles: Traditional Methods 79</b></p> <p>6.1 Introduction 79</p> <p>6.2 Characterization of the water 80</p> <p>6.3 Methods for particle removal in fish farming 80</p> <p>6.3.1 Mechanical filters and microscreens 81</p> <p>6.3.2 Depth filtration: granular medium filters 84</p> <p>6.3.3 Settling or gravity filters 87</p> <p>6.3.4 Integrated treatment systems 90</p> <p>6.4 Hydraulic loads on filter units 91</p> <p>6.5 Purification efficiency 92</p> <p>6.6 Dual drain tank 92</p> <p>6.7 Local ecological solutions 94</p> <p>References 94</p> <p><b>7 Protein Skimming, Flotation, Coagulation and Flocculation 97</b></p> <p>7.1 Introduction 97</p> <p>7.1.1 Surface tension, cohesion and adhesion 99</p> <p>7.1.2 Surfactants 102</p> <p>7.2 Mechanisms for attachment and removal 102</p> <p>7.2.1 Attachment of particles to rising bubbles by collision, typically in flotation 103</p> <p>7.2.2 Improving colloid and particle removal rates: pretreatment 105</p> <p>7.2.3 Attachment of surface‐active substances, typically in protein skimmers 111</p> <p>7.2.4 Particle attachment by nucleation 112</p> <p>7.3 Bubbles 113</p> <p>7.3.1 What is a gas bubble? 113</p> <p>7.3.2 Methods for bubble generation 113</p> <p>7.3.3 Bubble size 115</p> <p>7.3.4 Bubble coalescence 115</p> <p>7.4 Foam 116</p> <p>7.4.1 What is foam? 116</p> <p>7.4.2 Foam stability 117</p> <p>7.4.3 Foam breakers 118</p> <p>7.5 Introduction of bubbles affects the gas concentration in the water 118</p> <p>7.6 Use of bubble columns in aquaculture 118</p> <p>7.7 Performance of protein skimmers and flotation plants in aquaculture 119</p> <p>7.7.1 What is removed in inlet or effluent aquaculture water with the use of protein skimmers? 119</p> <p>7.7.2 Factors affecting the efficiency of protein skimming in aquaculture 121</p> <p>7.7.3 Use of ozone 122</p> <p>7.7.4 Bubble fractionation 123</p> <p>7.8 Design and dimensioning of protein skimmers and flotation plants 123</p> <p>7.8.1 Protein skimmers: principles and design 123</p> <p>7.8.2 Protein skimmers: dimensioning 125</p> <p>7.8.3 Flotation plant 126</p> <p>7.8.4 Important factors affecting design of a DAF plant 127</p> <p>References 129</p> <p><b>8 Membrane Filtration 135</b></p> <p>8.1 History and use 135</p> <p>8.2 What is membrane filtration? 136</p> <p>8.3 Classification of membrane filters 137</p> <p>8.4 Flow pattern 139</p> <p>8.5 Membrane shape/geometry 140</p> <p>8.6 Membrane construction/morphology 142</p> <p>8.7 Flow across membranes 143</p> <p>8.8 Membrane materials 143</p> <p>8.9 Fouling 144</p> <p>8.10 Automation 146</p> <p>8.11 Design and dimensioning of membrane filtration plants 146</p> <p>8.12 Some examples of results with membranes used in aquaculture 149</p> <p>References 150</p> <p><b>9 Sludge 153</b></p> <p>9.1 What is sludge 153</p> <p>9.2 Utilization of the sludge 154</p> <p>9.3 Dewatering of sludge 155</p> <p>9.4 Stabilization of sludge 156</p> <p>9.5 Composting of the sludge: aerobic decomposition 156</p> <p>9.6 Fermentation and biogas production: anaerobic decomposition 158</p> <p>9.7 Addition of lime 159</p> <p>9.8 Drying of sludge 159</p> <p>9.9 Combustion of sludge 160</p> <p>9.10 Other possibilities for treatment and utilization of the sludge 161</p> <p>References 161</p> <p><b>10 Disinfection 163</b></p> <p>10.1 Introduction 163</p> <p>10.2 Basis of disinfection 164</p> <p>10.2.1 Degree of removal 164</p> <p>10.2.2 Chick’s law 164</p> <p>10.2.3 Watson’s law 165</p> <p>10.2.4 Dose–response curve 165</p> <p>10.3 Ultraviolet light 165</p> <p>10.3.1 Function 165</p> <p>10.3.2 Mode of action 165</p> <p>10.3.3 Design 166</p> <p>10.3.4 Design specification 166</p> <p>10.3.5 Dose 168</p> <p>10.3.6 Special problems 168</p> <p>10.4 Ozone 168</p> <p>10.4.1 Function 168</p> <p>10.4.2 Mode of action 169</p> <p>10.4.3 Design specification 169</p> <p>10.4.4 Ozone dose 170</p> <p>10.4.5 Special problems 170</p> <p>10.4.6 Measuring ozone content 172</p> <p>10.5 Advanced oxidation technology 172</p> <p>10.5.1 Redox potential 172</p> <p>10.5.2 Methods utilizing AOT 173</p> <p>10.6 Other disinfection methods 175</p> <p>10.6.1 Photozone 175</p> <p>10.6.2 Heat treatment 175</p> <p>10.6.3 Chlorine 175</p> <p>10.6.4 Changing the pH 176</p> <p>10.6.5 Natural methods: ground filtration or constructed wetland 176</p> <p>10.6.6 Membrane filtration 176</p> <p>References 176</p> <p><b>11 Heating and Cooling 179</b></p> <p>11.1 Introduction 179</p> <p>11.2 Heating requires energy 179</p> <p>11.3 Methods for heating water 180</p> <p>11.4 Heaters 181</p> <p>11.4.1 Immersion heaters 181</p> <p>11.4.2 Oil and gas burners 183</p> <p>11.5 Heat exchangers 183</p> <p>11.5.1 Why use heat exchangers? 183</p> <p>11.5.2 How is the heat transferred? 184</p> <p>11.5.3 Factors affecting heat transfer 184</p> <p>11.5.4 Important parameters when calculating the size of heat exchangers 185</p> <p>11.5.5 Types of heat exchanger 187</p> <p>11.5.6 Flow pattern in heat exchangers 189</p> <p>11.5.7 Materials in heat exchangers 190</p> <p>11.5.8 Fouling 191</p> <p>11.6 Heat pumps 192</p> <p>11.6.1 Why use heat pumps? 192</p> <p>11.6.2 Construction and function of a heat pump 192</p> <p>11.6.3 Log pressure–enthalpy (<i>p–H</i>) 193</p> <p>11.6.4 Coefficient of performance 194</p> <p>11.6.5 Installations of heat pumps 194</p> <p>11.6.6 Management and maintenance of heat pumps 196</p> <p>11.7 Composite heating systems 196</p> <p>11.8 Chilling of water 199</p> <p>References 201</p> <p><b>12 Gas Exchange, Aeration, Oxygenation and CO<sub>2</sub> Removal 203</b></p> <p>12.1 Introduction 203</p> <p>12.2 Gas exchange in fish 203</p> <p>12.3 Gases in water 204</p> <p>12.4 Gas solubility in water 206</p> <p>12.5 Gas transfer theory: aeration 210</p> <p>12.5.1 Equilibrium 210</p> <p>12.5.2 Gas transfer 212</p> <p>12.6 Design and construction of aerators 213</p> <p>12.6.1 Basic principles 213</p> <p>12.6.2 Change of gas composition in the water for testing purposes 214</p> <p>12.6.3 Evaluation criteria 215</p> <p>12.6.4 Example of designs for different types of aerator 217</p> <p>12.7 Oxygenation of water 223</p> <p>12.8 Theory of oxygenation 224</p> <p>12.8.1 Increasing the equilibrium concentration 224</p> <p>12.8.2 Gas transfer velocity 224</p> <p>12.8.3 Addition under pressure 224</p> <p>12.9 Design and construction of oxygen injection systems 225</p> <p>12.9.1 Basic principles 225</p> <p>12.9.2 Where to install the injection system 225</p> <p>12.9.3 Evaluation of methods for injecting oxygen gas 227</p> <p>12.9.4 Examples of oxygen injection system designs 227</p> <p>12.10 Oxygen gas characteristics 231</p> <p>12.11 Sources of oxygen 231</p> <p>12.11.1 Oxygen gas 231</p> <p>12.11.2 Liquid oxygen 232</p> <p>12.11.3 On‐site oxygen production 234</p> <p>12.11.4 Selection of source 235</p> <p>References 236</p> <p><b>13 Removal of Ammonia and Other Nitrogen Connections from Water 239</b></p> <p>13.1 Introduction 239</p> <p>13.1.1 Nitrogen connections 239</p> <p>13.1.2 Total nitrogen: Kjeldahl nitrogen 239</p> <p>13.1.3 Amount of NH<sub>3</sub> in the water is pH dependent 239</p> <p>13.1.4 NH<sub>4</sub><sup>+</sup><sub>‐</sub>N 240</p> <p>13.1.5 Nitrogen, a part of a cycle 241</p> <p>13.1.6 Measurement of nitrogen compounds 241</p> <p>13.1.7 Reference values for aquaculture 241</p> <p>13.2 Biological removal of ammonium ion 242</p> <p>13.3 Nitrification 242</p> <p>13.4 Construction of nitrification filters 244</p> <p>13.4.1 Flow‐through system 244</p> <p>13.4.2 The filter medium in the biofilter 245</p> <p>13.4.3 Rotating biofilter (biodrum) 246</p> <p>13.4.4 Moving bed bioreactor (MBBR) 246</p> <p>13.4.5 Granular filters/bead filters 248</p> <p>13.5 Management of biological filters 248</p> <p>13.6 Example of biofilter design 248</p> <p>13.7 Denitrification 249</p> <p>13.8 Other bacteria cultures 250</p> <p>13.9 Inoculation and boosting of biological filters 251</p> <p>13.10 Chemical removal of ammonia 251</p> <p>13.10.1 Principle 251</p> <p>13.10.2 Construction 251</p> <p>13.11 Other methods 253</p> <p>References 253</p> <p><b>14 Recycling Aquaculture Systems: Traditional Recirculating Water Systems 257</b></p> <p>14.1 Introduction 257</p> <p>14.2 Advantages and disadvantages of re‐use systems 257</p> <p>14.2.1 Advantages of re‐use systems 257</p> <p>14.2.2 Disadvantages of re‐use systems 258</p> <p>14.3 Definitions 259</p> <p>14.3.1 Degree of re‐use 259</p> <p>14.3.2 Water exchange in relation to amount of fish or to supplied amount of feed 260</p> <p>14.3.3 Degree of purification 260</p> <p>14.3.4 Intensity of the RAS 261</p> <p>14.4 Theoretical models for construction of re‐use systems 261</p> <p>14.4.1 Mass flow in the system 261</p> <p>14.4.2 Water requirements of the system 261</p> <p>14.4.3 Connection between outlet concentration, degree of re‐use and effectiveness of the water treatment system 262</p> <p>14.5 Components in a re‐use system 264</p> <p>14.5.1 Freshwater, brackish water and seawater RAS 267</p> <p>14.6 Accumulation of substances, hydrogen sulphide problem and earthy taste removal 267</p> <p>14.6.1 Accumulation of substances 267</p> <p>14.6.2 Earthy taste removal 267</p> <p>14.6.3 The hydrogen sulphide problem 268</p> <p>14.7 Water maturation, disinfection and use of probiotics 269</p> <p>14.8 Design of a re‐use system 270</p> <p>14.9 Evaluation of performance of a RAS 272</p> <p>References 273</p> <p><b>15 Natural Systems, Integrated Aquaculture, Aquaponics, Biofloc 275</b></p> <p>15.1 Characterization of production systems 275</p> <p>15.2 Closing the nutrient loop 275</p> <p>15.3 Re‐use of water: an interesting topic 275</p> <p>15.4 Natural systems, polyculture, integrated systems 277</p> <p>15.4.1 Integrated multitropic aquaculture 277</p> <p>15.4.2 Biological purification of water: some basics 278</p> <p>15.4.3 Examples of systems utilizing photoautotrophic organisms: aquaponics 279</p> <p>15.4.4 Examples of systems utilizing heterotrophic bacteria: active sludge and bioflocs 279</p> <p>15.4.5 The biofloc system 281</p> <p>References 283</p> <p><b>16 Production Units: A Classification 285</b></p> <p>16.1 Introduction 285</p> <p>16.2 Classification of production units 285</p> <p>16.2.1 Intensive/extensive 288</p> <p>16.2.2 Fully controlled/semi‐controlled 288</p> <p>16.2.3 Land based/tidal based/sea based 288</p> <p>16.2.4 Other 289</p> <p>16.3 Possibilities for controlling environmental impact 290</p> <p><b>17 Egg Storage and Hatching Equipment 291</b></p> <p>17.1 Introduction 291</p> <p>17.2 Systems where the eggs stay pelagic 292</p> <p>17.2.1 The incubator 293</p> <p>17.2.2 Water inlet and water flow 293</p> <p>17.2.3 Water outlet 294</p> <p>17.3 Systems where the eggs lie on the bottom 294</p> <p>17.3.1 Systems where the eggs lie in the same unit from spawning to fry ready for start feeding 295</p> <p>17.3.2 Systems where the eggs must be removed before hatching 298</p> <p>17.3.3 Systems where storing, hatching and first feeding are carried out in the same unit 298</p> <p>References 299</p> <p><b>18 Tanks, Basins and Other Closed Production Units 301</b></p> <p>18.1 Introduction 301</p> <p>18.2 Types of closed production unit 301</p> <p>18.3 How much water should be supplied? 303</p> <p>18.4 Water exchange rate 304</p> <p>18.5 Ideal or non‐ideal mixing and water exchange 305</p> <p>18.6 Tank design 306</p> <p>18.7 Flow pattern and self‐cleaning 308</p> <p>18.8 Water inlet design 310</p> <p>18.9 Water outlet or drain 312</p> <p>18.10 Dual drain 314</p> <p>18.11 Other installations 315</p> <p>References 315</p> <p><b>19 Ponds 317</b></p> <p>19.1 Introduction 317</p> <p>19.2 The ecosystem 317</p> <p>19.3 Different production ponds 318</p> <p>19.4 Pond types 320</p> <p>19.4.1 Construction principles 320</p> <p>19.4.2 Drainable or non‐drainable 320</p> <p>19.5 Size and construction 321</p> <p>19.6 Site selection 322</p> <p>19.7 Water supply 322</p> <p>19.8 The inlet 322</p> <p>19.9 The outlet: drainage 323</p> <p>19.10 Pond layout 324</p> <p>References 325</p> <p><b>20 Sea Cages 327</b></p> <p>20.1 Introduction 327</p> <p>20.2 Site selection 328</p> <p>20.3 Environmental factors affecting a floating construction 329</p> <p>20.3.1 Waves 329</p> <p>20.3.2 Wind 336</p> <p>20.3.3 Current 336</p> <p>20.3.4 Ice 338</p> <p>20.3.5 Site classification 339</p> <p>20.4 Construction of sea cages 339</p> <p>20.4.1 Cage collar or framework 340</p> <p>20.4.2 Weighting and stretching 341</p> <p>20.4.3 Net bags 342</p> <p>20.4.4 Breakwaters 346</p> <p>20.4.5 Examples of cage constructions 347</p> <p>20.5 Mooring systems 351</p> <p>20.5.1 Design of the mooring system 352</p> <p>20.5.2 Description of the single components in a pre‐stressed mooring system 354</p> <p>20.5.3 Examples of mooring systems in use 360</p> <p>20.6 Calculation of forces on a sea cage farm 360</p> <p>20.6.1 Types of force 362</p> <p>20.6.2 Calculation of current forces 363</p> <p>20.6.3 Calculation of wave forces 367</p> <p>20.6.4 Calculation of wind forces 367</p> <p>20.6.5 Calculation of weight on materials in water 368</p> <p>20.7 Calculation of the size of the mooring system 368</p> <p>20.7.1 Mooring analysis 368</p> <p>20.7.2 Calculation of sizes for mooring lines 369</p> <p>20.8 Control of mooring systems 371</p> <p>References 371</p> <p><b>21 Feeding Systems 375</b></p> <p>21.1 Introduction 375</p> <p>21.1.1 Why use automatic feeding systems? 375</p> <p>21.1.2 What can be automated? 375</p> <p>21.1.3 Selection of feeding system 375</p> <p>21.1.4 Feeding system requirements 376</p> <p>21.2 Types of feeding equipment 376</p> <p>21.2.1 Feed blowers 376</p> <p>21.2.2 Feed dispensers 376</p> <p>21.2.3 Demand feeders 378</p> <p>21.2.4 Automatic feeders 378</p> <p>21.2.5 Feeding systems 383</p> <p>21.3 Feed control 385</p> <p>21.4 Feed control systems 385</p> <p>21.5 Dynamic feeding systems 386</p> <p>References 386</p> <p><b>22 Internal Transport and Size Grading 389</b></p> <p>22.1 Introduction 389</p> <p>22.2 The importance of fish handling 390</p> <p>22.2.1 Why move the fish? 390</p> <p>22.2.2 Why size grade? 391</p> <p>22.3 Negative effects of handling the fish 394</p> <p>22.4 Methods and equipment for internal transport 395</p> <p>22.4.1 Moving fish with a supply of external energy 395</p> <p>22.4.2 Methods for moving fish without the need for external energy 405</p> <p>22.5 Methods and equipment for size grading of fish 406</p> <p>22.5.1 Equipment for grading that requires an energy supply 406</p> <p>22.5.2 Methods for voluntary grading (self‐grading) 416</p> <p>References 416</p> <p><b>23 Transport of Live Fish 419</b></p> <p>23.1 Introduction 419</p> <p>23.2 Preparation for transport 419</p> <p>23.3 Land transport 420</p> <p>23.3.1 Land vehicles 420</p> <p>23.3.2 The tank 420</p> <p>23.3.3 Supply of oxygen 421</p> <p>23.3.4 Changing the water 422</p> <p>23.3.5 Density 422</p> <p>23.3.6 Instrumentation and stopping procedures 423</p> <p>23.4 Sea transport 423</p> <p>23.4.1 Well boats 423</p> <p>23.4.2 The well 424</p> <p>23.4.3 Density 425</p> <p>23.4.4 Instrumentation 425</p> <p>23.4.5 Recent trends in well boat technology 426</p> <p>23.5 Air transport 426</p> <p>23.6 Other transport methods 427</p> <p>23.7 Cleaning and re‐use of water 428</p> <p>23.8 Use of additives 429</p> <p>References 429</p> <p><b>24 Instrumentation and Monitoring 431</b></p> <p>24.1 Introduction 431</p> <p>24.2 Construction of measuring instruments 432</p> <p>24.3 Instruments for measuring water quality 432</p> <p>24.3.1 Measuring temperature 433</p> <p>24.3.2 Measuring oxygen content of the water 433</p> <p>24.3.3 Measuring pH 434</p> <p>24.3.4 Measuring conductivity and salinity 435</p> <p>24.3.5 Measuring total gas pressure and nitrogen saturation 435</p> <p>24.3.6 Spectrophotometers for water analysis 436</p> <p>24.3.7 Other 439</p> <p>24.4 Instruments for measuring physical conditions 439</p> <p>24.4.1 Measuring the water flow 440</p> <p>24.4.2 Measuring water pressure 442</p> <p>24.4.3 Measuring water level 443</p> <p>24.5 Equipment for counting fish, measuring fish size and estimation of total biomass 444</p> <p>24.5.1 Counting fish 444</p> <p>24.5.2 Measuring fish size and total fish biomass 445</p> <p>24.6 Monitoring systems 448</p> <p>24.6.1 Sensors and measuring equipment 449</p> <p>24.6.2 Monitoring centre 449</p> <p>24.6.3 Warning equipment 451</p> <p>24.6.4 Regulation equipment 451</p> <p>24.6.5 Maintenance and control 451</p> <p>24.7 Remotely operated vehicle (ROV) technology 451</p> <p>References 452</p> <p><b>25 Buildings and Superstructures 455</b></p> <p>25.1 Why use buildings? 455</p> <p>25.2 Types, shape and roof design 455</p> <p>25.2.1 Types 455</p> <p>25.2.2 Shape 456</p> <p>25.2.3 Roof design 457</p> <p>25.3 Load‐carrying systems 457</p> <p>25.4 Materials 458</p> <p>25.5 Prefabricate or build on site? 460</p> <p>25.6 Insulated or not? 460</p> <p>25.7 Foundations and ground conditions 461</p> <p>25.8 Design of major parts 461</p> <p>25.8.1 Floors 461</p> <p>25.8.2 Walls 462</p> <p>25.9 Ventilation and climate control 463</p> <p>References 465</p> <p><b>26 Design and Construction of Aquaculture Facilities: Some Examples 467</b></p> <p>26.1 Introduction 467</p> <p>26.2 Land‐based hatchery, juvenile and on‐growing production plant utilizing flow‐through technology 467</p> <p>26.2.1 General 467</p> <p>26.2.2 Water intake and transfer 468</p> <p>26.2.3 Water treatment department 477</p> <p>26.2.4 Production rooms 479</p> <p>26.2.5 Feed storage 483</p> <p>26.2.6 Disinfection barrier 484</p> <p>26.2.7 Other rooms 484</p> <p>26.2.8 Outlet water treatment 484</p> <p>26.2.9 Important equipment 484</p> <p>26.3 Land‐based juvenile and on‐growing production plant utilizing RAS technology 486</p> <p>26.3.1 Introduction 486</p> <p>26.3.2 Fish tanks and production department 488</p> <p>26.3.3 Water treatment department 489</p> <p>26.3.4 Retention time and number of turnover per day 492</p> <p>26.3.5 Heating/chilling 493</p> <p>26.3.6 H<sub>2</sub>S problem 493</p> <p>26.3.7 Sludge treatment system 493</p> <p>26.3.8 Fish handling 494</p> <p>26.3.9 Others 494</p> <p>26.4 On‐growing production, sea cage farms 494</p> <p>26.4.1 General 494</p> <p>26.4.2 Site selection 494</p> <p>26.4.3 The cages and the fixed equipment 495</p> <p>26.4.4 The base station 498</p> <p>26.4.5 Net handling 499</p> <p>26.4.6 Boat 500</p> <p>References 501</p> <p><b>27 Planning Aquaculture Facilities 503</b></p> <p>27.1 Introduction 503</p> <p>27.2 The planning process 504</p> <p>27.3 Site selection 504</p> <p>27.4 Production plan 505</p> <p>27.5 Room programme 505</p> <p>27.6 Necessary analyses 505</p> <p>27.7 Drawing up alternative solutions 508</p> <p>27.8 Evaluation of and choosing between the alternative solutions 511</p> <p>27.9 Finishing plans, detailed planning 511</p> <p>27.10 Function test of the plant 511</p> <p>27.11 Project review 511</p> <p>References 511</p> <p>Index 513</p>
<p><b>ODD-IVAR LEKANG</b>, Associate Professor of Aquaculture Engineering, Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Norway.
<p><b>THE REVISED EDITION OF THE COMPREHENSIVE BOOK THAT EXPLORES THE PRINCIPLES AND APPLICATIONS OF AQUACULTURE ENGINEERING</b> <p>Since the publication of the first edition of <i>Aquaculture Engineering</i> there have been many advances in the industry. The revised and thoroughly updated third edition of <i>Aquaculture Engineering</i> covers the principles and applications of all major facets of aquaculture engineering and the newest developments in the field. Written by a noted expert on the topic, the new edition highlights information on new areas of interest including RAS technology and offshore fish farming. <p>Comprehensive in scope, the book examines a range of topics including: water transportation and treatment; feed and feeding systems; fish transportation and grading; cleaning and waste handling; instrumentation and monitoring; removal of particles; aeration and oxygenation; recirculation and water reuse systems; ponds; and the design and construction of aquaculture facilities. This important book: <ul> <li>Presents an updated review of the basic principles and applications in aquaculture engineering</li> <li>Includes information on new areas of focus; RAS technology and offshore fish farming</li> <li>Contains a revised edition of the classic resource on aquaculture engineering</li> <li>Continues to offer an authoritative guide written by a leading expert in the field</li> </ul> <p>Written for aquaculture scientists and managers, engineers, equipment manufacturers and suppliers, and biological scientists, the third edition of <i>Aquaculture Engineering</i> is the authoritative guide to the topic that has been updated to include the most recent developments in the industry.

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €