Details

Sustainable Water Treatment


Sustainable Water Treatment

Advances and Interventions
1. Aufl.

von: Siddhartha Moulik, Aditi Mullick, Anirban Roy

173,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 27.06.2022
ISBN/EAN: 9781119480044
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>SUSTAINABLE WATER TREATMENT: ADVANCES AND INTERVENTIONS</b> <p><b>This outstanding new volume is a compendium of reference material which will cover most of the relevant and state-of-art approaches in the field of water treatment, focusing on technological advances for water treatment in four categories: advanced oxidation technologies, nanoparticles for water treatment, membrane separations, and other emerging technologies or processes.</b> <p>Apart from this perspective, fundamental discussions on a wide variety of pollutants have also been included, such as acidic wastewater treatment, metallurgical wastewater, textile wastewater as well as groundwater. The editors have not only covered a wide range of water treatment techniques, but also focus on their applications, offering a holistic perspective on water treatment in general. <p> Covering all of the latest advances, innovations, and developments in practical applications for sustainable water treatment, this volume represents the most comprehensive, up-to-date coverage of the issues of the day and state of the art. Whether for the veteran engineer or scientist or a student, this volume is a must-have for any library. <p><b><i> Sustainable Water Treatment: Advances and Interventions covers:</i></b> <ul><li>Provides an insight into various sectors of water and wastewater treatment technologies, introducing key technical topics </li> <li>Is a comprehensive guide to technological interventions for water and wastewater treatment </li> <li>Is also a reference book for any elective course on water treatment for engineers, scientists, and students, at both the undergraduate and graduate levels </li> <li>Presents the most current and up-to-date advances in sustainable water treatment </li> <li>Covers key technical topics and gives readers a comprehensive understanding of the latest research findings </li> <li>Includes perspectives on future trends and challenges </li></ul>
<p>Introduction xix</p> <p><b>Section I: Advanced Oxidation Processes 1</b></p> <p><b>1 Advanced Oxidation Processes: Fundamental, Technologies, Applications and Recent Advances 3<br /></b><i>Akshat Khandelwal and Saroj Sundar Baral</i></p> <p>1.1 Introduction 4</p> <p>1.2 Background and Global Trend of Advanced Oxidation Process 5</p> <p>1.3 Advanced Oxidation Systems 8</p> <p>1.3.1 Ozone-Based AOP 9</p> <p>1.3.2 UV/H2O2 10</p> <p>1.3.3 Radiation 10</p> <p>1.3.4 Fenton Reaction 12</p> <p>1.3.5 Photocatalytic 13</p> <p>1.3.6 Electrochemical Oxidation 14</p> <p>1.4 Comparison and Challenges of AOP Technologies 15</p> <p>1.5 Conclusion and Perspective 19</p> <p>References 20</p> <p><b>2 A Historical Approach for Integration of Cavitation Technology with Conventional Wastewater Treatment Processes 27<br /></b><i>Bhaskar Bethi, G. B. Radhika, Shirish H. Sonawane, Shrikant Barkade and Ravindra Gaikwad</i></p> <p>2.1 Introduction to Cavitation for Wastewater Treatment 28</p> <p>2.1.1 Mechanistic Aspects of Ultrasound Cavitation 28</p> <p>2.1.2 Mechanistic Aspects of Hydrodynamic Cavitation 29</p> <p>2.2 Importance of Integrating Water Treatment Technology in Present Scenario 30</p> <p>2.3 Integration Ultrasound Cavitation (UC) with Conventional Treatment Techniques 31</p> <p>2.3.1 Sonosorption (UC+ Adsorption) 32</p> <p>2.3.2 Son-Chemical Oxidation (UC + Chemical Oxidation) 38</p> <p>2.3.3 UC+Filtration 39</p> <p>2.4 Integration of Hydrodynamic Cavitation (HC) with Conventional Treatment Techniques 40</p> <p>2.4.1 Hydrodynamic Cavitation + Adsorption 40</p> <p>2.4.2 Hydrodynamic Cavitation + Biological Oxidation 42</p> <p>2.4.3 Hydrodynamic Cavitation + Chemical Treatment 43</p> <p>2.5 Scale-Up Issues with Ultrasound Cavitation Process 50</p> <p>2.6 Conclusion and Future Perspectives: Hydrodynamic Cavitation as a Future Technology 50</p> <p>Acknowledgements 51</p> <p>References 51</p> <p><b>3 Hydrodynamic Cavitation: Route to Greener Technology for Wastewater Treatment 57<br /></b><i>Anupam Mukherjee, Ravi Teja, Aditi Mullick, Subhankar Roy, Siddhartha Moulik and Anirban Roy</i></p> <p>3.1 Introduction 58</p> <p>3.2 Cavitation: General Perspective 72</p> <p>3.2.1 Phase Transition 72</p> <p>3.2.2 Types of Cavitation 73</p> <p>3.2.3 Hydrodynamic Cavitation 74</p> <p>3.2.4 Bubble Dynamics Model 80</p> <p>3.2.4.1 Rayleigh-Plesset Equation 80</p> <p>3.2.4.2 Bubble Contents 80</p> <p>3.2.4.3 Nonequilibrium Effects 84</p> <p>3.2.5 Physio-Chemical Effects 84</p> <p>3.2.5.1 Thermodynamic Effects 85</p> <p>3.2.5.2 Mechanical Effects 86</p> <p>3.2.5.3 Chemical Effects 87</p> <p>3.2.5.4 Biological Effects 88</p> <p>3.3 Hydrodynamic Cavitation Reactors 88</p> <p>3.3.1 Liquid Whistle Reactors 89</p> <p>3.3.2 High-Speed Homogenizers 89</p> <p>3.3.3 Micro-Fluidizers 90</p> <p>3.3.4 High-Pressure Homogenizers 90</p> <p>3.3.5 Orifice Plates Setup 91</p> <p>3.3.5.1 Effect of the Ratio of Total Perimeter to Total Flow Area 92</p> <p>3.3.5.2 Effect of Flow Area to the Cross-Sectional Area of the Pipe 92</p> <p>3.3.6 Venture Device Setup 92</p> <p>3.3.6.1 Effect of Divergence Angle 93</p> <p>3.3.6.2 Effect of the Ratio of Throat Diameter/Height to Length 94</p> <p>3.3.7 Vortex-Based HC Reactor 94</p> <p>3.4 Effect of Operating Parameters of HC 94</p> <p>3.4.1 Effect of Inlet Pressure 94</p> <p>3.4.2 Effect of Temperature 95</p> <p>3.4.3 Effect of Initial Concentration of Pollutant 96</p> <p>3.4.4 Effect of Treatment Time 96</p> <p>3.4.5 Effect of pH 97</p> <p>3.5 Toxicity Assessment 97</p> <p>3.6 Techno-Economic Feasibility 100</p> <p>3.7 Applications 101</p> <p>3.8 Conclusions and Thoughts About the Future 102</p> <p>3.9 Acknowledgement 103</p> <p>3.10 Disclosure 103</p> <p>Nomenclature 103</p> <p>References 105</p> <p><b>4 Recent Trends in Ozonation Technology: Theory and Application 117<br /></b><i>Anupam Mukherjee, Dror Avisar and Anirban Roy</i></p> <p>4.1 Introduction 118</p> <p>4.2 Fundamentals of Mass Transfer 119</p> <p>4.3 Mass Transfer of Ozone in Water 125</p> <p>4.3.1 Solubility of Ozone in Water 126</p> <p>4.3.1.1 Model for Determining the True Solubility Concentration 126</p> <p>4.3.2 Mass Transfer Model of Ozone in Water 128</p> <p>4.3.3 Henry and Volumetric Mass Transfer Coefficient Determination 133</p> <p>4.3.3.1 Microscopic Ozone Balance in the Gas Phase 134</p> <p>4.3.3.2 Macroscopic Ozone Balance in the Gas Phase 134</p> <p>4.3.3.3 Ozone Balance at Constant Ozone Concentrations 136</p> <p>4.3.4 Single Bubble Model of Mass Transfer 137</p> <p>4.3.5 Decomposition of Ozone in Water 144</p> <p>4.3.6 Ozone Contactors and Energy Requirement 146</p> <p>4.4 Factors Affecting Hydrodynamics and Mass Transfer in Bubble Column Reactor 147</p> <p>4.4.1 Fluid Dynamics and Regime Analysis 148</p> <p>4.4.2 Gas Holdup 149</p> <p>4.4.3 Bubble Characteristics 149</p> <p>4.4.4 Mass Transfer Coefficient 150</p> <p>4.5 Application 150</p> <p>4.6 Conclusion and Thoughts About the Future 158</p> <p>Acknowledgement 158</p> <p>Nomenclature 158</p> <p>References 161</p> <p><b>Section II: Nanoparticle-Based Treatment 171</b></p> <p><b>5 Nanoparticles and Nanocomposite Materials for Water Treatment: Application in Fixed Bed Column Filter 173<br /></b><i>Chhaya, Dibyanshu, Sneha Singh and Trishikhi Raychoudhury</i></p> <p>5.1 Introduction 174</p> <p>5.2 Target Contaminants: Performance of Nanoparticles and Nanocomposite Materials 178</p> <p>5.2.1 Inorganic Contaminants 178</p> <p>5.2.1.1 Heavy Metals 178</p> <p>5.2.1.2 Nonmetallic Contaminant 195</p> <p>5.2.2 Organic Contaminant 197</p> <p>5.2.2.1 Organic Dyes 197</p> <p>5.2.2.2 Halogenated Hydrocarbons 202</p> <p>5.2.2.3 Polycyclic Aromatic Hydrocarbon (PAH) 203</p> <p>5.2.2.4 Miscellaneous Aromatic Pollutant 221</p> <p>5.2.3 Emerging Contaminants 222</p> <p>5.2.3.1 Pharmaceuticals and Personal Care Products 222</p> <p>5.2.3.2 Miscellaneous Compounds 225</p> <p>5.3 Application of Nanoparticles and Nanocomposite Materials in Fixed Bed Column Filter for Water Treatment 226</p> <p>5.3.1 Fate and Transport Process of Contaminants in the Fixed Bed Column Filter 226</p> <p>5.3.2 Application of Nanoparticles and Nanocomposite Materials in Fixed Bed Column Filter 228</p> <p>References 231</p> <p><b>6 Nanomaterials for Wastewater Treatment: Potential and Barriers in Industrialization 245<br /></b><i>Snehasis Bhakta</i></p> <p>6.1 Introduction 245</p> <p>6.2 Nanomaterials in Wastewater Treatment 248</p> <p>6.2.1 Nanotechnological Processes for Wastewater Treatment 249</p> <p>6.2.1.1 Nanofiltration 249</p> <p>6.2.1.2 Adsorption 249</p> <p>6.2.1.3 Photocatalysis 249</p> <p>6.2.1.4 Disinfection 250</p> <p>6.2.2 Different Nanomaterials for Wastewater Treatment 250</p> <p>6.2.2.1 Zerovalent Metal Nanoparticles 250</p> <p>6.2.2.2 Metal Oxide Nanoparticles 251</p> <p>6.2.2.3 Other Nanoparticles 252</p> <p>6.3 Smart Nanomaterials: Molecularly Imprinted Polymers (MIP) 253</p> <p>6.3.1 Molecularly Imprinted Polymers (MIP) 253</p> <p>6.3.2 Application of MIP-Based Nanomaterials in Wastewater Treatment 254</p> <p>6.3.2.1 Recognition of Pollutants 254</p> <p>6.3.2.2 Removal of Pollutants 255</p> <p>6.3.2.3 Catalytic Degradation of Organic Molecules 256</p> <p>6.3.3 Barriers in Industrialization 257</p> <p>6.4 Cheap Alternative Nanomaterials 257</p> <p>6.4.1 Nanoclay for Wastewater Treatment 258</p> <p>6.4.1.1 Water Filtration by Nanoclays 258</p> <p>6.4.1.2 Water Treatment by Hybrid Gel 258</p> <p>6.4.1.3 Nanosponges 259</p> <p>6.4.2 Nanocellulose for Wastewater Treatment 259</p> <p>6.4.2.1 Adsorption of Heavy Metals by Nanocellulose 260</p> <p>6.4.2.2 Adsorption of Dyes by Nanocellulose 260</p> <p>6.4.2.3 Barriers in Industrialization 260</p> <p>6.5 Toxicity Associated with Nanotechnology in Wastewater Treatment 261</p> <p>6.6 Barriers in Industrialization 262</p> <p>6.7 Future Aspect and Conclusions 263</p> <p>References 264</p> <p><b>Section III: Membrane-Based Treatment 271</b></p> <p><b>7 Microbial Fuel Cell Technology for Wastewater Treatment 273<br /></b><i>Nilesh Vijay Rane, Alka Kumari, Chandrakant Holkar, Dipak V. Pinjari and Aniruddha B. Pandit</i></p> <p>7.1 Introduction 274</p> <p>7.2 Microbial Fuel Cell 276</p> <p>7.2.1 Working Principle 276</p> <p>7.2.2 Role of MFC Components 279</p> <p>7.2.3 Performance Indicator of MFC 280</p> <p>7.2.4 Design Parameters 282</p> <p>7.2.5 Types of Microbial Fuel Cell 283</p> <p>7.3 Recent Development in MFC Component 286</p> <p>7.3.1 Recent Development in Cathode Used in MFC 286</p> <p>7.3.2 Recent Development in Anode Used in MFC 291</p> <p>7.3.3 Recent Developments in Membranes Used in MFC 295</p> <p>7.4 MFC for Wastewater Treatment 298</p> <p>7.4.1 Advantages of MFC Over Conventional Treatment 299</p> <p>7.4.2 Challenges in the Wastewater Treatment Using MFC 300</p> <p>7.5 Different Ways for Increasing the Throughput of MFC 301</p> <p>7.5.1 Big Reactor Size 301</p> <p>7.5.2 Stacking 302</p> <p>7.5.3 Cathode 303</p> <p>7.5.4 Anode 303</p> <p>7.5.5 Separating Material 304</p> <p>7.5.6 Harnessing Output Energy 304</p> <p>7.5.7 Increasing Long-Term Stability 305</p> <p>7.5.8 Coupling of MFC with Other Techniques 305</p> <p>7.6 Different Case Studies Indicating Commercial Use of MFC 306</p> <p>7.7 Other Applications of MFC 310</p> <p>7.8 Conclusions and Recommendations (Future Work) 311</p> <p>References 313</p> <p><b>8 Ceramic Membranes in Water Treatment: Potential and Challenges for Technology Development 325<br /></b><i>Debarati Mukherjee and Sourja Ghosh</i></p> <p>8.1 Introduction 326</p> <p>8.1.1 Background and Current State-of-the-Art 326</p> <p>8.1.2 Ceramic Membranes: An Approach to Trade-Off the Bridge Between Theoretical Research and Industrial Applications 327</p> <p>8.1.3 Industrial Wastewater Treatment 329</p> <p>8.1.4 Domestic Wastewater Treatment 341</p> <p>8.2 Treatment of Contaminated Groundwater and Drinking Water 348</p> <p>8.2.1 Arsenic Contaminated Water 348</p> <p>8.2.2 Treatment of Fluoride Contaminated Water 350</p> <p>8.2.3 Treatment of Nitrate Contaminated Water 351</p> <p>8.2.4 Treatment of Water Spiked with Emerging Contaminants 352</p> <p>8.2.5 Treatment of Water Contaminated with Pathogens 354</p> <p>8.3 Classification of Filtration Based on Configuration 357</p> <p>8.3.1 Direct Membrane Filtration 357</p> <p>8.3.2 Hybrid Approaches 360</p> <p>8.4 Pilot-Scale Studies 368</p> <p>8.5 Challenges of Ceramic Membranes 369</p> <p>8.6 Conclusion and Future Scope of Ceramic Membranes 370</p> <p>References 371</p> <p><b>9 Membrane Distillation for Acidic Wastewater Treatment 383<br /></b><i>Sarita Kalla, Rakesh Baghel, Sushant Upadhyaya and Kailash Singh</i></p> <p>9.1 Introduction 383</p> <p>9.2 Membrane Distillation and Its Configurations 384</p> <p>9.3 Sources of Acidic Effluent 385</p> <p>9.4 Applications of MD for Acidic Wastewater Treatment 387</p> <p>9.5 Hybrid MD Process 388</p> <p>9.6 Implications 395</p> <p>References 395</p> <p><b>10 Demonstration of Long-Term Assessment on Performance of VMD for Textile Wastewater Treatment 401<br /></b><i>Rakesh Baghel, Sarita Kalla, Sushant Upadhyaya and S. P. Chaurasia</i></p> <p>10.1 Introduction 401</p> <p>10.2 Transport Mechanism 403</p> <p>10.3 Impact of Process Variables on Permeate Flux 405</p> <p>10.4 Long-Term Performance Analysis of VMD 408</p> <p>10.5 Scale Formation in Long-Term Assessment 411</p> <p>Conclusion 412</p> <p>Nomenclature 412</p> <p>Greek Symbols 413</p> <p>References 413</p> <p><b>Section IV: Emerging Technologies & Processes 415</b></p> <p><b>11 Application of Zero Valent Iron to Removal Chromium and Other Heavy Metals in Metallurgical Wastewater 417<br /></b><i>Khac-Uan Do, Thi-Lien Le and Thuy-Lan Nguyen</i></p> <p>11.1 Introduction 418</p> <p>11.1.1 Wastewater Sources from Metallurgical Factories 418</p> <p>11.1.2 Characteristics of Wastewater in Metallurgical Factories 419</p> <p>11.1.3 Conventional Technologies for Treating Wastewater in Metallurgical Factories 420</p> <p>11.1.4 Zero Valent Iron for Removing Heavy Metals 422</p> <p>11.1.5 Objectives of the Study 422</p> <p>11.2 Materials and Methods 423</p> <p>11.2.1 Metallurgical Wastewater 423</p> <p>11.2.2 Preparation of Zero Valent Iron 424</p> <p>11.2.3 Batch Experiments 424</p> <p>11.2.4 Analysis Methods 425</p> <p>11.3 Results and Discussion 428</p> <p>11.3.1 Effects of pH on Hexavalent Chromium Removal 428</p> <p>11.3.2 Effects of Feo on Hexavalent Chromium Removal 430</p> <p>11.3.3 Effects of Contact Time on Hexavalent Chromium Removal 431</p> <p>11.3.4 Effects of pH on Heavy Metals Removal 432</p> <p>11.3.5 Effects of PAC on Heavy Metals Removal 433</p> <p>11.3.6 Effects of PAM on Heavy Metals Removal 434</p> <p>11.4 Conclusion 435</p> <p>Acknowledgements 436</p> <p>References 436</p> <p><b>12 Removal of Arsenic and Fluoride from Water Using Novel Technologies 441<br /></b><i>Ishita Sarkar, Sankha Chakrabortty, Jayato Nayak and Parimal Pal</i></p> <p>12.1 Background Study of Arsenic 442</p> <p>12.1.1 Source and Existence of Arsenic 442</p> <p>12.1.2 Effects of Arsenic 443</p> <p>12.1.3 Regulation and Permissible Limit of Arsenic in Drinking Water 444</p> <p>12.2 Background Study of Fluoride 445</p> <p>12.2.1 Source and Existence of Fluoride 445</p> <p>12.2.2 Effects of Fluoride 445</p> <p>12.2.3 Regulation and Permissible Limit of Fluoride in Drinking Water 446</p> <p>12.3 Technologies Used for Arsenic Removal from Contaminated Groundwater 447</p> <p>12.3.1 Oxidation Method 447</p> <p>12.3.2 Coagulation-Precipitation Method 450</p> <p>12.3.3 Ion-Exchange Method 450</p> <p>12.3.4 Adsorption Method 451</p> <p>12.4 Technologies for Fluoride Removal from Contaminated Groundwater 456</p> <p>12.4.1 Coagulation-Precipitation Method 456</p> <p>12.4.2 Nalgonda Technique 456</p> <p>12.4.3 Adsorption Method 458</p> <p>12.4.4 Ion-Exchange Method 458</p> <p>12.5 Membrane Technology Used for Arsenic and Fluoride Mitigations 460</p> <p>12.5.1 Introduction of Membrane Technology 460</p> <p>12.5.2 Arsenic Removal by Membrane Filtration 462</p> <p>12.5.2.1 Arsenic Removal by Microfiltration System 462</p> <p>12.5.2.2 Arsenic Removal by Ultrafiltration System 464</p> <p>12.5.2.3 Arsenic Removal by Nanofiltration System 466</p> <p>12.5.2.4 Arsenic Removal by Other Membrane-Based Process 472</p> <p>12.5.3 Fluoride Removal by Different Membrane Filtration System 475</p> <p>References 480</p> <p><b>13 A Zero Liquid Discharge Strategy with MSF Coupled with Crystallizer 487<br /></b><i>Jasneet Kaur Pala, Siddhartha Moulik, Asim K. Ghosh, Reddi Kamesh and Anirban Roy</i></p> <p>13.1 Introduction 488</p> <p>13.2 Minimum Energy Required for Desalination Process 490</p> <p>13.2.1 Minimum Work Requirement 492</p> <p>13.2.2 Recovery Ratio 494</p> <p>13.3 Methodology and Simulation 494</p> <p>13.3.1 MSF Process Description 494</p> <p>13.3.2 Crystallizer Process Description 495</p> <p>13.3.3 Modeling and Simulation 496</p> <p>13.3.4 Input Parameters 501</p> <p>13.4 Results and Discussion 504</p> <p>13.4.1 Comparison of Energy Demand Between Simulated Model and Theoretical Model 504</p> <p>13.4.2 Impact of Temperature and Flowrate on Thermal Energy 507</p> <p>13.4.3 Impact on Thermal Energy During MLD and ZLD 507</p> <p>13.4.4 Crystallization of Salts 511</p> <p>13.5 Conclusion 511</p> <p>13.6 Acknowledgment 512</p> <p>References 512</p> <p><b>14 A Critical Review on Prospects and Challenges in “Conceptualization to Technology Transfer” for Nutrient Recovery from Municipal Wastewater 517<br /></b><i>Shubham Lanjewar, Birupakshya Mishra, Anupam Mukherjee, Aditi Mullick, Siddhartha Moulik and Anirban Roy</i></p> <p>14.1 Introduction 518</p> <p>14.2 Chemical Processes for Resources Recovery 520</p> <p>14.2.1 Chemical Precipitation 521</p> <p>14.2.1.1 Magnesium and Calcium – Phosphorous Precipitation 521</p> <p>14.2.1.2 Aluminum – Phosphorous Precipitation 522</p> <p>14.2.1.3 Ferric – Phosphorous Precipitation 523</p> <p>14.2.2 Adsorption and Ion-Exchange 524</p> <p>14.3 Biological Processes for Resources Recovery 528</p> <p>14.3.1 Anammox Process for Nutrients Recovery 529</p> <p>14.3.2 Algal Methods for Sewage Treatment and Nutrient Recovery 530</p> <p>14.3.2.1 Nutrients Recovery from Micro-Algae Growth 530</p> <p>14.3.2.2 Nutrients Recovery from Wetland Plants Growth 533</p> <p>14.4 Membrane-Based Hybrid Technologies for Nutrients, Energy, and Water Recovery 534</p> <p>14.4.1 Membrane Based Nutrients Recovery 534</p> <p>14.4.2 Bio Electrochemical Systems (BES) for Resources Recovery 537</p> <p>14.4.3 Nutrients Recovery via Osmotic Membrane Bioreactor 544</p> <p>14.4.4 Economics and Feasibility of Processes 545</p> <p>14.5 Conclusion 551</p> <p>Acknowledgements 551</p> <p>Disclosure 551</p> <p>References 551</p> <p><b>15 Sustainable Desalination: Future Scope in Indian Subcontinent 567<br /></b><i>Rudra Rath, Asim K. Ghosh and Anirban Roy</i></p> <p>15.1 Introduction 567</p> <p>15.2 Water Supply and Demand in India 568</p> <p>15.3 Current Status of Desalination in India 571</p> <p>15.4 Commercially Available Technologies 572</p> <p>15.4.1 Reverse Osmosis (RO) 572</p> <p>15.4.2 Electrodialysis (ED) 573</p> <p>15.4.3 Membrane Capacitive Deionization (MCDI) 574</p> <p>15.4.4 Thermal Desalination 574</p> <p>15.5 Possible Technological Intervention 576</p> <p>15.5.1 Solar Desalination 576</p> <p>15.5.1.1 Solar Stills 577</p> <p>15.5.1.2 Photovoltaic (PV) Powered Desalination in India 579</p> <p>15.5.2 Wave Power Desalination 580</p> <p>15.5.3 Geothermal Desalination 580</p> <p>15.5.4 Low-Temperature Thermal Desalination (LTTD) 580</p> <p>15.5.5 Membrane Distillation (MD) 581</p> <p>15.5.6 Forward Osmosis (FO) 582</p> <p>15.6 Challenges and Implementation Strategies for Sustainable Use of Desalination Technologies 583</p> <p>References 584</p> <p><b>16 Desalination: Thermodynamic Modeling and Energetics 591<br /></b>Shubham Lanjewar, Ridhish Kumar, Kunal Roy, Rudra Rath, Anupam Mukherjee and Anirban Roy</p> <p>16.1 Introduction 592</p> <p>16.2 Thermodynamics Modeling of Desalination 593</p> <p>16.2.1 Electrolyte Solutions 594</p> <p>16.2.2 Generalized Minimum Work of Separation 596</p> <p>16.2.2.1 Mass Basis 597</p> <p>16.2.2.2 Mole Basis 598</p> <p>16.3 Modeling of Major Thermal Desalination Techniques 599</p> <p>16.3.1 A General Multi-Effect Distillation (MED) Process Configuration for Desalination 601</p> <p>16.3.1.1 Steady State Process Model of a MED System 601</p> <p>16.3.1.2 Performance Parameters Analysis 606</p> <p>16.3.2 A General Process Configuration of Multi-Stage Flash (MSF) Desalination 607</p> <p>16.3.2.1 Steady State Process Model of an MSF System 608</p> <p>16.3.3 A General Process Configuration of Mechanical Vapor Compression (MVC) Desalination 612</p> <p>16.3.3.1 Steady State Process Model of an MVC System 613</p> <p>16.4 Advantage of RO Above Other Mentioned Technologies 615</p> <p>16.4.1 Advantages of RO Process 616</p> <p>16.4.2 Energy Requirement in Desalination by an Evaporation Technique 617</p> <p>16.4.3 Energy Requirements for Desalination by Reversible RO Process 617</p> <p>16.4.4 Energy Analysis of Different Desalination Techniques 619</p> <p>16.4.5 Economic Analysis of Different Desalination Techniques 620</p> <p>16.5 Exergy Analysis of Reverse Osmosis 623</p> <p>16.5.1 General Exergy Analysis in Desalination and Its Necessity 625</p> <p>16.5.1.1 Exergy Efficiency and Its Improvement Potential Analysis 628</p> <p>16.5.2 A Case Study on Reverse Osmosis Based Desalination Unit Reporting Exergy Performance 630</p> <p>16.6 Conclusion 631</p> <p>Nomenclature 632</p> <p>References 636</p> <p>Index 643</p>
<p><b>Siddhartha Moulik,</b> PhD, received his PhD from CSIR-Indian Institute Chemical Technology, Hyderabad, India. With years of experience, he has worked on projects with some of the most prestigious companies and laboratories in the industry. He has published 23 articles in journals of international repute, filed three patents, and published 15 book chapters. He is also the recipient of 15 prestigious national awards, and he has published two books with Scrivener Publishing. </p> <p><b>Aditi Mullick,</b> PhD, received her PhD from the Indian Institute of Technology, Kharagpur, India. She has published ten articles in journals of international repute, filed two patents, and published one book thus far, also with Scrivener Publishing. She is also the recipient of seven prestigious national awards and fellowships. <p><b>Anirban Roy,</b> PhD, is an assistant professor in the Department of Chemical Engineering at BITS Pilani Goa campus. He has published 20 articles in journals of international repute, filed eight patents, and published one book thus far. He also has ample industrial experience, as well as academic experience, in the field.
<p><b>This outstanding new volume is a compendium of reference material which will cover most of the relevant and state-of-art approaches in the field of water treatment, focusing on technological advances for water treatment in four categories: advanced oxidation technologies, nanoparticles for water treatment, membrane separations, and other emerging technologies or processes.</b></p> <p>Apart from this perspective, fundamental discussions on a wide variety of pollutants have also been included, such as acidic wastewater treatment, metallurgical wastewater, textile wastewater as well as groundwater. The editors have not only covered a wide range of water treatment techniques, but also focus on their applications, offering a holistic perspective on water treatment in general. <p>Covering all of the latest advances, innovations, and developments in practical applications for sustainable water treatment, this volume represents the most comprehensive, up-to-date coverage of the issues of the day and state of the art. Whether for the veteran engineer or scientist or a student, this volume is a must-have for any library. <p><b><i> Sustainable Water Treatment: Advances and Interventions covers:</i></b> <ul><li>Provides an insight into various sectors of water and wastewater treatment technologies, introducing key technical topics </li> <li>Is a comprehensive guide to technological interventions for water and wastewater treatment </li> <li>Is also a reference book for any elective course on water treatment for engineers, scientists, and students, at both the undergraduate and graduate levels </li> <li>Presents the most current and up-to-date advances in sustainable water treatment </li> <li>Covers key technical topics and gives readers a comprehensive understanding of the latest research findings </li> <li>Includes perspectives on future trends and challenges </li></ul>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €