Details

Wireless Information and Power Transfer


Wireless Information and Power Transfer

Theory and Practice
IEEE Press 1. Aufl.

von: Derrick Wing Kwan Ng, Trung Q. Duong, Caijun Zhong, Robert Schober

114,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 05.11.2018
ISBN/EAN: 9781119476849
Sprache: englisch
Anzahl Seiten: 320

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><em style="mso-bidi-font-style: normal;">Wireless Information and Power Transfer</i> offers an authoritative and comprehensive guide to the theory, models, techniques, implementation and application of wireless information and power transfer (WIPT) in energy-constrained wireless communication networks. With contributions from an international panel of experts, this important resource covers the various aspects of WIPT systems such as, system modeling, physical layer techniques, resource allocation and performance analysis. The contributors also explore targeted research problems typically encountered when designing WIPT systems.</p>
<p>List of Contributors xiii</p> <p>Preface xvii</p> <p><b>1 The Era of Wireless Information and Power Transfer </b><b>1<br /></b><i>DerrickWing Kwan Ng, Trung Q. Duong, Caijun Zhong, and Robert Schober</i></p> <p>1.1 Introduction 1</p> <p>1.2 Background 3</p> <p>1.2.1 RF-BasedWireless Power Transfer 3</p> <p>1.2.2 Receiver Structure forWIPT 4</p> <p>1.3 Energy Harvesting Model andWaveform Design 6</p> <p>1.4 Efficiency and Interference Management inWIPT Systems 9</p> <p>1.5 Security in SWIPT Systems 10</p> <p>1.6 CooperativeWIPT Systems 11</p> <p>1.7 WIPT for 5G Applications 11</p> <p>1.8 Conclusion 12</p> <p>Acknowledgement 13</p> <p>Bibliography 13</p> <p><b>2 Fundamentals of Signal Design for WPT and SWIPT </b><b>17<br /></b><i>Bruno Clerckx andMorteza Varasteh</i></p> <p>2.1 Introduction 17</p> <p>2.2 WPT Architecture 19</p> <p>2.3 WPT Signal and System Design 21</p> <p>2.4 SWIPT Signal and System Design 29</p> <p>2.5 Conclusions and Observations 33</p> <p>Bibliography 33</p> <p><b>3 Unified Design ofWireless Information and Power Transmission </b><b><i>39<br /></i></b><i>Dong In Kim, Jong Jin Park, Jong HoMoon, and Kang Yoon Lee</i></p> <p>3.1 Introduction 39</p> <p>3.2 Nonlinear EH Models 40</p> <p>3.3 Waveform and Transceiver Design 43</p> <p>3.3.1 Multi-tone (PAPR) based SWIPT 43</p> <p>3.3.2 Dual Mode SWIPT 48</p> <p>3.4 Energy Harvesting Circuit Design 53</p> <p>3.5 Discussion and Conclusion 58</p> <p>Bibliography 58</p> <p><b>4 Industrial SWIPT: Backscatter Radio and RFIDs </b><b>61<br /></b><i>Panos N. Alevizos and Aggelos Bletsas</i></p> <p>4.1 Introduction 61</p> <p>4.2 Wireless Signal Model 62</p> <p>4.3 RFID Tag Operation 64</p> <p>4.3.1 RF Harvesting and Powering for RFID Tag 64</p> <p>4.3.2 RFID Tag Backscatter (Uplink) Radio 65</p> <p>4.4 Reader BER for Operational RFID 68</p> <p>4.5 RFID Reader SWIPT Reception 69</p> <p>4.5.1 Harvesting Sensitivity Outage 69</p> <p>4.5.2 Power Consumption Outage 70</p> <p>4.5.3 Information Outage 71</p> <p>4.5.4 Successful SWIPT Reception 71</p> <p>4.6 Numerical Results 72</p> <p>4.7 Conclusion 76</p> <p>Bibliography 76</p> <p><b>5 Multi-antenna Energy Beamforming for SWIPT </b><b>81<br /></b><i>Jie Xu and Rui Zhang</i></p> <p>5.1 Introduction 81</p> <p>5.2 System Model 84</p> <p>5.3 Rate–Energy Region Characterization 87</p> <p>5.3.1 Problem Formulation 87</p> <p>5.3.2 Optimal Solution 90</p> <p>5.4 Extensions 93</p> <p>5.5 Conclusion 94</p> <p>Bibliography 95</p> <p><b>6 On the Application of SWIPT in NOMA Networks </b><b>99<br /></b><i>Yuanwei Liu andMaged Elkashlan</i></p> <p>6.1 Introduction 99</p> <p>6.1.1 Motivation 100</p> <p>6.2 Network Model 101</p> <p>6.2.1 Phase 1: Direct Transmission 101</p> <p>6.2.2 Phase 2: Cooperative Transmission 104</p> <p>6.3 Non-Orthogonal Multiple Access with User Selection 105</p> <p>6.3.1 RNRF Selection Scheme 105</p> <p>6.3.2 NNNF Selection Scheme 108</p> <p>6.3.3 NNFF Selection Scheme 111</p> <p>6.4 Numerical Results 112</p> <p>6.4.1 Outage Probability of the Near Users 112</p> <p>6.4.2 Outage Probability of the Far Users 115</p> <p>6.4.3 Throughput in Delay-Sensitive Transmission Mode 116</p> <p>6.5 Conclusions 117</p> <p>Bibliography 118</p> <p><b>7 Fairness-AwareWireless Powered Communications with Processing Cost </b><b>121<br /></b><i>Zoran Hadzi-Velkov, Slavche Pejoski, and Nikola Zlatanov</i></p> <p>7.1 Introduction 121</p> <p>7.2 System Model 122</p> <p>7.2.1 Energy Storage Strategies 124</p> <p>7.2.2 Circuit Power Consumption 124</p> <p>7.3 Proportionally Fair Resource Allocation 125</p> <p>7.3.1 Short-term Energy Storage Strategy 125</p> <p>7.3.2 Long-term Energy Storage Strategy 127</p> <p>7.3.3 Practical Online Implementation 130</p> <p>7.3.4 Numerical Results 131</p> <p>7.4 Conclusion 133</p> <p>7.5 Appendix 133</p> <p>7.5.1 Proof of Theorem 7.2 133</p> <p>Bibliography 136</p> <p><b>8 Wireless Power Transfer in MillimeterWave </b><b>139<br /></b><i>Talha Ahmed Khan and RobertW. Heath Jr.</i></p> <p>8.1 Introduction 139</p> <p>8.2 System Model 141</p> <p>8.3 Analytical Results 143</p> <p>8.4 Key Insights 147</p> <p>8.5 Conclusions 151</p> <p>8.6 Appendix 153</p> <p>Bibliography 154</p> <p><b>9 Wireless Information and Power Transfer in Relaying Systems </b><b>157<br /></b><i>P. D. Diamantoulakis, K. N. Pappi, and G. K. Karagiannidis</i></p> <p>9.1 Introduction 157</p> <p>9.2 Wireless-Powered Cooperative Networks with a Single Source–Destination Pair 158</p> <p>9.2.1 System Model and Outline 158</p> <p>9.2.2 Wireless Energy Harvesting Relaying Protocols 159</p> <p>9.2.3 Multiple Antennas at the Relay 161</p> <p>9.2.4 Multiple Relays and Relay Selection Strategies 163</p> <p>9.2.5 Power Allocation Strategies for Multiple Carriers 166</p> <p>9.3 Wireless-Powered Cooperative Networks with Multiple Sources 168</p> <p>9.3.1 System Model 168</p> <p>9.3.2 Power Allocation Strategies 169</p> <p>9.3.3 Multiple Relays and Relay Selection Strategies 173</p> <p>9.3.4 Two-Way Relaying Networks 175</p> <p>9.4 Future Research Challenges 176</p> <p>9.4.1 Nonlinear Energy Harvesting Model and Hardware Impairments 176</p> <p>9.4.2 NOMA-based Relaying 176</p> <p>9.4.3 Large-Scale Networks 176</p> <p>9.4.4 Cognitive Relaying 177</p> <p>Bibliography 177</p> <p><b>10 Harnessing Interference in SWIPT Systems </b><b>181<br /></b><i>Stelios Timotheou, Gan Zheng, Christos Masouros, and Ioannis Krikidis</i></p> <p>10.1 Introduction 181</p> <p>10.2 System Model 183</p> <p>10.3 Conventional Precoding Solution 184</p> <p>10.4 Joint Precoding and Power Splitting with Constructive</p> <p>Interference 185</p> <p>10.4.1 Problem Formulation 186</p> <p>10.4.2 Upper Bounding SOCP Algorithm 188</p> <p>10.4.3 Successive Linear Approximation Algorithm 190</p> <p>10.4.4 Lower Bounding SOCP Formulation 191</p> <p>10.5 Simulation Results 192</p> <p>10.6 Conclusions 194</p> <p>Bibliography 194</p> <p><b>11 Physical Layer Security in SWIPT Systems with Nonlinear Energy Harvesting Circuits </b><b>197<br /></b><i>Yuqing Su, DerrickWing Kwan Ng, and Robert Schober</i></p> <p>11.1 Introduction 197</p> <p>11.2 Channel Model 200</p> <p>11.2.1 Energy Harvesting Model 201</p> <p>11.2.2 Channel State Information Model 203</p> <p>11.2.3 Secrecy Rate 204</p> <p>11.3 Optimization Problem and Solution 204</p> <p>11.4 Results 208</p> <p>11.5 Conclusions 211</p> <p>Appendix-Proof of Theorem 11.1 211</p> <p>Bibliography 213</p> <p><b>12 Wireless-Powered Cooperative Networks with Energy Accumulation </b><b>217<br /></b><i>Yifan Gu, He Chen, and Yonghui Li</i></p> <p>12.1 Introduction 217</p> <p>12.2 System Model 219</p> <p>12.3 Energy Accumulation of Relay Battery 222</p> <p>12.3.1 Transition Matrix of the MC 222</p> <p>12.3.2 Stationary Distribution of the Relay Battery 224</p> <p>12.4 Throughput Analysis 224</p> <p>12.5 Numerical Results 226</p> <p>12.6 Conclusion 228</p> <p>12.7 Appendix 229</p> <p>Bibliography 231</p> <p><b>13 Spectral and Energy-EfficientWireless-Powered IoT Networks </b><b>233<br /></b><i>QingqingWu,Wen Chen, and Guangchi Zhang</i></p> <p>13.1 Introduction 233</p> <p>13.2 System Model and Problem Formulation 235</p> <p>13.2.1 System Model 235</p> <p>13.2.2 T-WPCN and Problem Formulation 236</p> <p>13.2.3 N-WPCN and Problem Formulation 237</p> <p>13.3 T-WPCN or N-WPCN? 237</p> <p>13.3.1 Optimal Solution for T-WPCN 238</p> <p>13.3.2 Optimal Solution for N-WPCN 239</p> <p>13.3.3 TDMA versus NOMA 240</p> <p>13.4 Numerical Results 243</p> <p>13.4.1 SE versus PB Transmit Power 243</p> <p>13.4.2 SE versus Device Circuit Power 245</p> <p>13.5 Conclusions 245</p> <p>13.6 FutureWork 247</p> <p>Bibliography 247</p> <p><b>14 Wireless-PoweredMobile Edge Computing Systems </b><b>253<br /></b><i>FengWang, Jie Xu, XinWang, and Shuguang Cui</i></p> <p>14.1 Introduction 253</p> <p>14.2 System Model 256</p> <p>14.3 Joint MEC-WPT Design 260</p> <p>14.3.1 Problem Formulation 260</p> <p>14.3.2 Optimal Solution 260</p> <p>14.4 Numerical Results 266</p> <p>14.5 Conclusion 268</p> <p>Bibliography 268</p> <p><b>15 Wireless Power Transfer: A Macroscopic Approach </b><b>273<br /></b><i>Constantinos Psomas and Ioannis Krikidis</i></p> <p>15.1 Wireless-Powered Cooperative Networks with Energy Storage 274</p> <p>15.1.1 System Model 274</p> <p>15.1.2 Relay Selection Schemes 276</p> <p>15.1.3 Numerical Results 280</p> <p>15.2 Wireless-Powered Ad Hoc Networks with SIC and SWIPT 282</p> <p>15.2.1 System Model 282</p> <p>15.2.2 SWIPT with SIC 284</p> <p>15.2.3 Numerical Results 285</p> <p>15.3 AWireless-Powered Opportunistic Feedback Protocol 286</p> <p>15.3.1 System Model 287</p> <p>15.3.2 Wireless-Powered OBF Protocol 290</p> <p>15.3.3 Beam Outage Probability 290</p> <p>15.3.4 Numerical Results 292</p> <p>15.4 Conclusion 293</p> <p>Bibliography 294</p> <p>Index 297</p>
<p><b>DERRICK WING KWAN NG</b> is a senior lecturer in the School of Electrical Engineering and Telecommunications at The University of New South Wales, Australia. <p><b>TRUNG Q. DUONG</b> is a reader in the School of Electronics, Electrical Engineering and Computer Science at Queen's University Belfast, UK. <p><b>CAIJUN ZHONG</b> is an associate professor in the College of Information Science and Electronic Engineering at Zhejiang University, China. <p><b>ROBERT SCHOBER</b> is a full professor at the Institute for Digital Communications, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
<p><b>A COMPREHENSIVE GUIDE TO THE WIRELESS INFORMATION AND POWER TRANSFER, WITH CONTRIBUTIONS FROM NOTED EXPERTS</b> <p><i>Wireless Information and Power Transfer</i> offers an authoritative and comprehensive guide to the theory, models, techniques, implementation and application of wireless information and power transfer (WIPT) in energy-constrained wireless communication networks. With contributions from an international panel of experts, this important resource covers the various aspects of WIPT systems such as system modeling, physical layer techniques, resource allocation and performance analysis. The contributors also explore targeted research problems typically encountered when designing WIPT systems. <p>The volume bridges the gap between theory and practice, contains an informative introduction to the topic and offers an overview of the important challenges regarding WIPT systems and communications networks. The authors discuss a range of topics including the circuit design, resource allocation algorithm design, and protocol design that addresses the challenges of both theoretical and practical approaches. This vital guide: <ul> <li>Offers an authoritative resource to the fundamentals, research and innovations in wireless information and power transfer</li> <li>Presents the challenges inherent in WIPT technology and communication networks</li> <li>Contains information on the history of the development of wireless power transfer and insight on the future of WIPT</li> <li>Includes contributions from an international panel of experts on the topic</li> </ul> <p>Written for students, researchers, and engineers in the field of wireless communications, <i>Wireless Information and Power Transfer</i> is a comprehensive guide to the theory, models, techniques, practical implementation and application of??wireless information and power transfer<b>.</b>

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €