Details

Principles and Applications of Fermentation Technology


Principles and Applications of Fermentation Technology


1. Aufl.

von: Arindam Kuila, Vinay Sharma

193,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 30.07.2018
ISBN/EAN: 9781119460480
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The book covers all aspects of fermentation technology such as principles, reaction kinetics, scaling up of processes, and applications.</p> <p>The 20 chapters written by subject matter experts are divided into two parts: Principles and Applications. In the first part subjects covered include:</p> <ul> <li>Modelling and kinetics of fermentation technology</li> <li>Sterilization techniques used in fermentation processes</li> <li>Design and types of bioreactors used in fermentation technology</li> <li>Recent advances and future prospect of fermentation technology</li> </ul> <p>The second part subjects covered include:</p> <ul> <li>Lactic acid and ethanol production using fermentation technology</li> <li>Various industrial value-added product biosynthesis using fermentation technology</li> <li>Microbial cyp450 production and its industrial application</li> <li>Polyunsaturated fatty acid production through solid state fermentation</li> <li>Application of oleaginous yeast for lignocellulosic biomass based single cell oil production</li> <li>Utilization of micro-algal biomass for bioethanol production</li> <li>Poly-lactide production from lactic acid through fermentation technology</li> <li>Bacterial cellulose and its potential impact on industrial applications</li> </ul>
<p><b>Part I: Principles of Fermentation Technology 1</b></p> <p><b>1 Fermentation Technology: Current Status and Future Prospects 3<br /></b><i>Ritika Joshi, Vinay Sharma and Arindam Kuila</i></p> <p>1.1 Introduction 3</p> <p>1.2 Types of Fermentation Processes 4</p> <p>1.2.1 Solid-State Fermentation 4</p> <p>1.2.2 Submerged Fermentation 5</p> <p>1.2.2.1 Batch Cultivation 5</p> <p>1.2.2.2 Substrates Used for Fermentation 5</p> <p>1.3 Enzymes 6</p> <p>1.3.1 Bacterial Enzymes 6</p> <p>1.3.2 Fungal Enzymes 6</p> <p>1.4 Antibiotics 7</p> <p>1.5 Fed-Batch Cultivation 8</p> <p>1.6 Application of SSF 9</p> <p>1.6.1 Enzyme Production 9</p> <p>1.6.2 Organic Acids 10</p> <p>1.6.3 Secondary Metabolites 10</p> <p>1.6.4 Antibiotic 10</p> <p>1.6.5 Biofuel 10</p> <p>1.6.6 Biocontrol Agents 11</p> <p>1.6.7 Vitamin 11</p> <p>1.7 Future Perspectives 11</p> <p>References 12</p> <p><b>2 Modeling and Kinetics of Fermentation Technology 15<br /></b><i>Biva Ghosh, Debalina Bhattacharya and Mainak Mukhopadhyay</i></p> <p>2.1 Introduction 16</p> <p>2.2 Modeling 17</p> <p>2.2.1 Importance of Modeling 18</p> <p>2.2.2 Components of Modeling 20</p> <p>2.2.2.1 Control Volume 20</p> <p>2.2.2.2 Variables 22</p> <p>2.2.2.3 Parameters 22</p> <p>2.2.2.4 Mathematical Model 22</p> <p>2.2.2.5 Automatization 23</p> <p>2.3 Kinetics of Modeling 26</p> <p>2.3.1 Thermodynamic 27</p> <p>2.3.2 Phenomenological 27</p> <p>2.3.3 Kinetic 27</p> <p>2.3.3.1 Volumetric Rate and Specific Rate 28</p> <p>2.3.3.2 Rate Expression for Microbial Culture 31</p> <p>2.4 Conclusion 41</p> <p>References 41</p> <p><b>3 Sterilization Techniques used in Fermentation Processes 45<br /></b><i>Shivani Sharma, Arindam Kuila and Vinay Sharma</i></p> <p>3.1 Introduction 45</p> <p>3.2 Rate of Microbial Death 46</p> <p>3.3 How do Sterilants Work? 47</p> <p>3.4 Types of Sterilization 47</p> <p>3.4.1 Heat 48</p> <p>3.4.2 Pressure 48</p> <p>3.4.3 Radiation 48</p> <p>3.4.4 Filtration 49</p> <p>3.4.5 Steam Sterilization 49</p> <p>3.5 Sterilization of the Culture Media 49</p> <p>3.5.1 Batch Sterilization 49</p> <p>3.5.2 Continuous Sterilization 50</p> <p>3.6 Sterilization of the Additives 50</p> <p>3.7 Sterilization of the Fermenter Vessel 51</p> <p>3.8 Filter Sterilization 51</p> <p>3.8.1 Diffusion 51</p> <p>3.8.2 Inertial Impaction 51</p> <p>3.8.3 Electrostatic Attraction 51</p> <p>3.8.4 Interception 52</p> <p>3.9 Sterilization of Air 52</p> <p>References 52</p> <p><b>4 Advances in Fermentation Technology: Principle and Their Relevant Applications 53<br /></b><i>Monika Choudhary, Sunanda Joshi, Sameer Suresh Bhagyawant and Nidhi Srivastava</i></p> <p>4.1 Introduction 53</p> <p>4.2 Basic Principle of Fermentation 54</p> <p>4.3 Biochemical Process 56</p> <p>4.4 Fermentation Methodology 58</p> <p>4.5 Biochemical Mechanism 59</p> <p>4.6 Fermentation and its Industrial Applications 60</p> <p>4.7 Relevance of Fermentation 61</p> <p>4.8 Conclusion 62</p> <p>References 63</p> <p><b>5 Fermentation Technology Prospecting on Bioreactors/Fermenters: Design and Types 65<br /></b><i>Gauri Singhal, Vartika Verma, Sameer Suresh Bhagyawant and Nidhi Srivastava</i></p> <p>5.1 Introduction 65</p> <p>5.2 Bioreactor and Fermenter 67</p> <p>5.3 Types of Fermenter and Bioreactor 68</p> <p>5.3.1 Laboratory Scale Fermenters 68</p> <p>5.3.2 Pilot Scale Fermenters 69</p> <p>5.3.3 Industrial Scale Fermenter 69</p> <p>5.4 Design and Operation 69</p> <p>5.4.1 Fermenter Vessel 72</p> <p>5.4.2 Heating and Cooling Apparatus 72</p> <p>5.4.3 Sealing Assembly 73</p> <p>5.4.4 Baffles 73</p> <p>5.4.5 Impeller 73</p> <p>5.4.6 Sparger 74</p> <p>5.4.7 Feed Ports 74</p> <p>5.4.8 Foam Control 74</p> <p>5.4.9 Valves 74</p> <p>5.4.10 Safety Valves 75</p> <p>5.5 Classification of Bioreactor 75</p> <p>5.6 Types of Fermenter/Bioreactor 75</p> <p>5.6.1 Stirred Tank Fermentor 75</p> <p>5.6.2 Airlift Fermentor 76</p> <p>5.6.3 Bubble Column Fermentor 78</p> <p>5.6.4 Packed Bed Reactors 78</p> <p>5.6.5 Fluidized Bed Bioreactor 80</p> <p>5.6.6 Photobioreactor 80</p> <p>5.6.7 Membrane Bioreactor 81</p> <p>5.7 Conclusion 82</p> <p>References 82</p> <p><b>Part II: Applications of Fermentation Technology 85</b></p> <p><b>6 Lactic Acid and Ethanol: Promising Bio-Based Chemicals from Fermentation 87<br /></b><i>Andrea Komesu, Johnatt Oliveira, Luiza Helena da Silva Martins, Maria Regina Wolf Maciel and Rubens Maciel Filho</i></p> <p>6.1 Introduction 88</p> <p>6.2 Generalities about LA and Ethanol 89</p> <p>6.3 Fermentation Methods to LA and Ethanol Production 93</p> <p>6.4 Potential Raw Materials for Biotechnology Production 95</p> <p>6.4.1 Potential Raw Materials for LA Production 95</p> <p>6.4.2 Potential Raw Materials for Bioethanol Production 97</p> <p>6.5 Challenges in LA and Ethanol Production 103</p> <p>6.6 Integrated Ethanol and LA Production 105</p> <p>6.7 Concluding Remarks 108</p> <p>References 108</p> <p><b>7 Application of Fermentation Strategies for Improved Laccase Production 117<br /></b><i>Priyanka Ghosh, Arpan Das and Uma Ghosh</i></p> <p>7.1 Introduction 117</p> <p>7.1.1 What is Laccase? 119</p> <p>7.2 Major Factors Influencing Fermentation Processes for Laccase Production 120</p> <p>7.2.1 Influence of Carbon Source 120</p> <p>7.2.2 Influence of Nitrogen Source 122</p> <p>7.2.3 Influence of Temperature 123</p> <p>7.2.4 Influence of pH 124</p> <p>7.2.5 Influence of Inducer 124</p> <p>7.3 Type of Cultivation 126</p> <p>7.3.1 Submerged Fermentation 126</p> <p>7.3.2 Solid-State Fermentation 126</p> <p>7.4 Biotechnological Application of Laccases 129</p> <p>7.4.1 Food Industry 129</p> <p>7.4.2 Textile Industries 131</p> <p>7.4.3 Paper Industry 131</p> <p>7.4.4 Bioremediation 131</p> <p>7.4.5 Pharmaceutical Industry 132</p> <p>7.5 Conclusion 132</p> <p>References 133</p> <p><b>8 Use of Fermentation Technology for Value Added Industrial Research 141<br /></b><i>Biva Ghosh, Debalina Bhattacharya and Mainak Mukhopadhyay</i></p> <p>8.1 Introduction 142</p> <p>8.2 Fermentation 143</p> <p>8.3 Biofuel Production 144</p> <p>8.3.1 Biohydrogen 144</p> <p>8.3.2 Biodiesel 145</p> <p>8.3.3 Bioethanol 146</p> <p>8.4 1,3-Propanediol 146</p> <p>8.5 Lactic Acid 147</p> <p>8.6 Polyhydroxyalkanoates 149</p> <p>8.7 Exopolysaccharides 150</p> <p>8.8 Succinic Acid 151</p> <p>8.9 Flavoring and Fragrance Substances 152</p> <p>8.10 Hormones and Enzymes 153</p> <p>8.11 Conclusion 156</p> <p>References 157</p> <p><b>9 Valorization of Lignin: Emerging Technologies and Limitations in Biorefineries 163<br /></b><i>Gourav Dhiman, Nadeem Akhtar and Gunjan Mukherjee</i></p> <p>9.1 Introduction 164</p> <p>9.2 Lignocellulosic Material: Focus on Second Generation Biofuel 165</p> <p>9.3 Composition and Biosynthesis of Lignin 166</p> <p>9.3.1 Structure Analysis of Lignin 167</p> <p>9.3.2 Degradative Analytical Techniques (Oxidation, Reduction, Hydrolysis, and Acidolysis) 167</p> <p>9.3.3 Non-Degradative Analytical Techniques (Thioglycolic Acid–TGA and Acetyl Bromide–ACBR) 168</p> <p>9.4 Bioengineering of Lignin 168</p> <p>9.4.1 Reducing the Recalcitrance Nature of Biomass 168</p> <p>9.4.2 Improving Lignin Content for Production of High Energy Feedstock 169</p> <p>9.5 Lignin Separation and Recovery 170</p> <p>9.5.1 Chemical- and Physical-Based Lignin Separations 171</p> <p>9.5.2 Biological Degradation of Lignin 172</p> <p>9.6 Lignin-Based Materials and Polymers 172</p> <p>9.7 Lignin-Based Fuels and Chemicals 173</p> <p>9.8 Concluding Remarks and Future Prospects 174</p> <p>References 175</p> <p><b>10 Exploring the Fermentation Technology for Biocatalysts Production 181<br /></b><i>Ronivaldo Rodrigues da Silva</i></p> <p>10.1 Introduction 181</p> <p>10.2 Biotechnology Fermentation 182</p> <p>10.2.1 Submerged Fermentation 182</p> <p>10.2.2 Solid State Fermentation 183</p> <p>10.3 Production of Enzymes 183</p> <p>References 185</p> <p><b>11 Microbial CYP450: An Insight into its Molecular/Catalytic Mechanism, Production and Industrial Application 189<br /></b><i>Abhilek Kumar Nautiyal, Arijit Jana, Sourya Bhattacharya, Tripti Sharma, Neha Bansal, Sree Sai Ogetiammini, Debashish Ghosh, Saugata Hazra and Diptarka Dasgupta</i></p> <p>11.1 Introduction 190</p> <p>11.2 Microbial Cytochrome P450 191</p> <p>11.3 Extent of P450s in Microbial Genome 193</p> <p>11.4 Structure, Function and Catalytic Cycle 194</p> <p>11.5 Strain Engineering for Improved Activity 197</p> <p>11.6 Producion Strategies of CYP450 203</p> <p>11.6.1 Bioreactor Consideration 203</p> <p>11.6.2 Protein Recovery 204</p> <p>11.7 Applications 205</p> <p>11.7.1 Environmental Application 206</p> <p>11.7.2 Medical Application 206</p> <p>11.8 Conclusion 208</p> <p>References 208</p> <p><b>12 Production of Polyunsaturated Fatty Acids by Solid State Fermentation 217<br /></b><i>Bruno Carlesso Aita, Stéfani Segato Spannemberg, Raquel Cristine Kuhn and Marcio Antonio Mazutti</i></p> <p>12.1 Introduction 217</p> <p>12.2 PUFAs Production by SSF 219</p> <p>12.3 Microorganisms Used for PUFAs Production by SSF 221</p> <p>12.4 Main Process Parameters 222</p> <p>12.4.1 Moisture Content of the Substrate 223</p> <p>12.4.2 Temperature 228</p> <p>12.4.3 Substrate 228</p> <p>12.4.4 Carbon to Nitrogen (C/N) Ratio 229</p> <p>12.4.5 pH 230</p> <p>12.4.6 Incubation Time 230</p> <p>12.5 Bioreactors 231</p> <p>12.6 Extraction of Microbial Oil 232</p> <p>12.7 Concluding Remarks 232</p> <p>References 233</p> <p><b>13 Solid State Fermentation – A Stimulating Process for Valorization of Lignocellulosic Feedstocks to Biofuel 239<br /></b><i>Arpan Das and Priyanka Ghosh</i></p> <p>13.1 Introduction 240</p> <p>13.2 Potential of Lignocellulosic Biomass for Biofuel Production 242</p> <p>13.3 Structure of Lignocellulose 243</p> <p>13.3.1 Cellulose 243</p> <p>13.3.2 Hemicellulose 245</p> <p>13.3.3 Lignin 245</p> <p>13.4 Biomass Recalcitrance 245</p> <p>13.5 Pre-Treatment of Lignocellulosic Biomass 246</p> <p>13.5.1 Chemical Pre-Treatment 247</p> <p>13.5.2 Physical Pre-Treatment 248</p> <p>13.5.3 Biological Pre-Treatment 248</p> <p>13.5.4 Inhibitors Released During Pre-Treatment 248</p> <p>13.6 Hydrolysis 249</p> <p>13.7 Limitations of Enzymatic Hydrolysis 250</p> <p>13.8 Fermentation 252</p> <p>13.8.1 Separate Hydrolysis and Fermentation (SHF) 252</p> <p>13.8.2 Simultaneous Saccharification and Fermentation (SSF) 252</p> <p>13.8.3 Consolidated Bioprocessing 255</p> <p>13.9 Concluding Remarks 257</p> <p>References 257</p> <p><b>14 Oleaginous Yeasts: Lignocellulosic Biomass Derived Single Cell Oil as Biofuel Feedstock 263<br /></b><i>Neha Bansal, Mahesh B Khot, Arijit Jana, Abhilek K Nautiyal, Tripti Sharma, Diptarka Dasgupta, Swati Mohapatra, Sanoj Kumar Yadav, Saugata Hazra and Debashish Ghosh</i></p> <p>14.1 Introduction 264</p> <p>14.2 Oleaginous Yeasts: A Brief Account 265</p> <p>14.3 Lignocellulosic Biomass and its Deconstruction 267</p> <p>14.4 Biochemistry of Lipid Biosynthesis 276</p> <p>14.5 Genetic Modification for Enhancing Lipid Yield 278</p> <p>14.5.1 Over-Expression of Key Metabolic Genes 278</p> <p>14.5.2 Blocking Competing Pathways 281</p> <p>14.5.3 Challenges in Genetic Engineering of Yeast 282</p> <p>14.6 Fermentative Cultivation, Recovery of Yeast Lipids as SCO and Production of Biofuel 282</p> <p>14.7 Characterization of Yeast SCO: Implications towards Biodiesel Properties 288</p> <p>14.8 Concluding Remarks 289</p> <p>References 294</p> <p><b>15 Pre-Treatment of Lignocellulose for the Production of Biofuels 307<br /></b><i>Biva Ghosh, Debalina Bhattacharya and Mainak Mukhopadhyay</i></p> <p>15.1 Introduction 307</p> <p>15.2 Lignocellulose 309</p> <p>15.3 Parameters Effecting the Hydrolysis of Lignocellulose 310</p> <p>15.3.1 Crystallinity of Cellulose 310</p> <p>15.3.2 Cellulose Degree of Polymerization 311</p> <p>15.3.3 Effect of Accessible Surface Area 311</p> <p>15.3.4 Encapsulation by Lignin 311</p> <p>15.3.5 Hemicellulose Content 312</p> <p>15.3.6 Porosity 312</p> <p>15.4 Pre-Treatment of Lignocellulose 312</p> <p>15.4.1 Physical Pre-Treatment 313</p> <p>15.4.1.1 Milling 313</p> <p>15.4.1.2 Microwave 314</p> <p>15.4.1.3 Ultrasound 315</p> <p>15.4.1.4 Irradiation 315</p> <p>15.4.1.5 Mechanical Extrusion 315</p> <p>15.4.1.6 Pyrolysis 316</p> <p>15.4.1.7 Pulse Electric Field (PEF) 317</p> <p>15.4.2 Chemical Pre-Treatment 317</p> <p>15.4.2.1 Alkaline Pre-Treatment 317</p> <p>15.4.2.2 Dilute-Acid Pre-Treatment 318</p> <p>15.4.2.3 Ionic Liquids 320</p> <p>15.4.2.4 Deep Eutectic Solvents 320</p> <p>15.4.2.5 Natural Deep Eutectic Solvents 321</p> <p>15.4.2.6 Ozonolysis 321</p> <p>15.4.2.7 Organosolv 322</p> <p>15.4.3 Physicochemical Pre-Treatment 323</p> <p>15.4.3.1 Ammonia Fiber Expansion (AFEX) 323</p> <p>15.4.3.2 Ammonia Recycled Percolation (ARP) and Soaking in Aqueous Ammonia 323</p> <p>15.4.3.3 Hot Water Pre-Treatment 324</p> <p>15.4.3.4 Steam Explosion 325</p> <p>15.4.3.5 SO2-Catalyzed Steam Explosion 326</p> <p>15.4.3.6 Oxidation 326</p> <p>15.4.3.7 Wet Oxidation 327</p> <p>15.4.3.8 SPORL Treatment 327</p> <p>15.4.3.9 Supercritical Fluid 327</p> <p>15.4.4 Biological Pre-Treatment 328</p> <p>15.4.4.1 White-Rot Fungi 328</p> <p>15.4.4.2 Brown-Rot Fungi 329</p> <p>15.4.4.3 Soft-Rot Fungi 329</p> <p>15.4.4.4 Bacteria and Actinomycetes 329</p> <p>15.4.5 Other Pre-Treatment Process 329</p> <p>15.4.5.1 Hydrotrope Pre-Treatment 329</p> <p>15.4.5.2 Photocatalytic Pre-Treatment 330</p> <p>15.5 Case Studies of Biofuels 331</p> <p>15.5.1 Ethanol Production 331</p> <p>15.5.2 Butanol 333</p> <p>15.5.3 Biohydrogen 334</p> <p>15.5.4 Biogas 336</p> <p>15.6 Conclusion 338</p> <p>Reference 339</p> <p><b>16 Microalgal Biomass as an Alternative Source of Sugars for the Production of Bioethanol 351<br /></b><i>Maria Eugenia Sanz Smachetti, Lara Sanchez Rizza, Camila Denise Coronel, Mauro Do Nascimento and Leonardo Curatti</i></p> <p>16.1 Overview 352</p> <p>16.2 Aquatic Species as Alternative Feedstocks for Low-Cost-Sugars 353</p> <p>16.2.1 Seaweed 353</p> <p>16.2.1.1 Seaweed Biomass 353</p> <p>16.2.1.2 Seaweed Cultivation 354</p> <p>16.2.1.3 Seaweed as a Biofuels Feedstock 355</p> <p>16.2.2 Microalgae 357</p> <p>16.2.2.1 Microalgae Biomass as a Biofuel Feedstock 358</p> <p>16.2.2.2 Microalgal Biomass Production Technology 362</p> <p>16.2.2.3 Microalgae Productivity 364</p> <p>16.2.2.4 Harvesting and Drying Algal Biomass 365</p> <p>16.2.2.5 Microalgal Biomass Conversion into Biofuels 367</p> <p>16.3 Environmental Sustainability of Microlgal-Based Biofuels 375</p> <p>16.4 Prospects for Commercialization of Microalgal-Based Bioethanol 376</p> <p>16.5 Conclusions and Perspectives 377</p> <p>References 378</p> <p><b>17 A Sustainable Process for Nutrient Enriched Fruit Juice Processing: An Enzymatic Venture 387<br /></b><i>Debajyoti Kundu, Jagriti Singh, Mohan Das, Akanksha Rastogi and Rintu Banerjee</i></p> <p>17.1 Introduction 388</p> <p>17.2 Conventional Methods for Juice Processing and Their Drawbacks 389</p> <p>17.3 Enzyme Technology in Different Step of Juice Processing 390</p> <p>17.3.1 Peeling and Extraction 391</p> <p>17.3.2 Clarification 393</p> <p>17.3.3 Debittering 395</p> <p>17.4 Conclusion 396</p> <p>References 396</p> <p><b>18 Biotechnological Exploitation of Poly-Lactide Produced from Cost Effective Lactic Acid 401<br /></b><i>Mohan Das, Debajyoti Kundu, Akanksha Rastogi, Jagriti Singh and Rintu Banerjee</i></p> <p>18.1 Introduction 402</p> <p>18.2 Need for Ideal Substrates for Lactic Acid Production 403</p> <p>18.3 Role of Microbes and Biochemical Pathways in Lactic Acid Production 405</p> <p>18.4 Purification of Lactic Acid 406</p> <p>18.5 Methods of Synthesis of PLA 408</p> <p>18.5.1 Direct Poly Condensation 408</p> <p>18.5.2 Ring Opening Poly Condensation 409</p> <p>18.6 Applications of PLA 411</p> <p>18.7 Conclusion 413</p> <p>References 413</p> <p><b>19 A New Perspective on Fermented Protein Rich Food and its Health Benefits 417<br /></b><i>Jagriti Singh, Akanksha Rastogi, Debajyoti Kundu, Mohan Das and Rintu Banerjee</i></p> <p>19.1 Introduction 418</p> <p>19.2 Sources of Fermented Protein 420</p> <p>19.3 Protein in Biological System 420</p> <p>19.4 Bioabsorbability of Protein 423</p> <p>19.4.1 Absorption of Peptides and Amino Acids 423</p> <p>19.5 Fermented Protein-Rich Food Products 424</p> <p>19.5.1 Soyabean (Gycine max) 424</p> <p>19.5.2 DDGS (Distillers Dried Grain with Solubles) 426</p> <p>19.5.3 Tempe 426</p> <p>19.5.4 Red Bean (Phaseolus Vulgaris) 427</p> <p>19.5.5 Fermented Peanuts (Arachis Hypogae) 428</p> <p>19.5.6 Sufu 428</p> <p>19.5.7 Kefir 429</p> <p>19.5.8 Fermented Whey Beverage 430</p> <p>19.5.9 Salami 431</p> <p>19.6 Conclusion 431</p> <p>References 432</p> <p><b>20 An Understanding of Bacterial Cellulose and its Potential Impact on Industrial Applications 437<br /></b><i>Akanksha Rastogi, Jagriti Singh, Mohan Das, Debajyoti Kundu and Rintu Banerjee</i></p> <p>20.1 Introduction 438</p> <p>20.2 Cultivation Conditions for Production of Bacterial Cellulose 439</p> <p>20.2.1 Fermentation Process 439</p> <p>20.2.2 Composition of Culture Media 440</p> <p>20.2.2.1 Carbon Source 440</p> <p>20.2.2.2 pH for Bacterial Cellulose Production 440</p> <p>20.2.2.3 Temperature for BC Production 441</p> <p>20.2.2.4 Dissolved Oxygen on BC Production 441</p> <p>20.3 Bioreactor System for Bacterial Cellulose 441</p> <p>20.3.1 Stirred Tank Reactor 442</p> <p>20.3.2 Trickling Bed Reactor 442</p> <p>20.3.3 Airlift Bioreactors 442</p> <p>20.3.4 Aerosol Bioreactor 443</p> <p>20.3.5 Rotary Bioreactor 443</p> <p>20.3.6 Horizontal Lift Reactor 444</p> <p>20.3.7 Other Type of Bioreactor 444</p> <p>20.4 Plant Cellulose vs. Bacterial Cellulose 444</p> <p>20.4.1 Morphology 446</p> <p>20.4.2 Crystallinity 447</p> <p>20.4.3 Degree of Polymerization 447</p> <p>20.4.4 Thermal Properties 447</p> <p>20.4.5 Mechanical Properties 447</p> <p>20.4.6 Water Absorption Properties 448</p> <p>20.4.7 Optical Properties 448</p> <p>20.5 Compositional View of Bacterial Cellulose 448</p> <p>20.6 Molecular Biology of Bacterial Cellulose 449</p> <p>20.7 Importance of Genetically Modified Bacteria in Bacterial Cellulose Production 450</p> <p>20.8 Applications of Bacterial Cellulose in Different Industrial Sector 451</p> <p>20.8.1 Skin and Wound Healing 451</p> <p>20.8.2 Bacterial Cellulose Composites 452</p> <p>20.8.3 Artificial Blood Vessels 452</p> <p>20.8.4 In Paper Industry 452</p> <p>20.8.5 In Food Industry 453</p> <p>20.8.6 Applications of Bacterial Cellulose in Other Fields 453</p> <p>20.9 Conclusion 454</p> <p>References 454</p> <p>Index 459</p>
<p><b>Arindam Kuila</b> is an Assistant Professor at the Department of Bioscience & Biotechnology, Banasthali University, Rajasthan. He obtained his PhD from the Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, India in 2013. He is the co-editor of "Lignocellulosic Biomass Production and Industrial Applications" (Wiley-Scrivener 2017), co-author of at least 11 peer-reviewed journals papers and 5 patents. <p><b>Vinay Sharma</b> is Dean, Faculty of Science & Technology and Chair, Department of Bioscience & Biotechnology at Banasthali University, India. He has over 30 years of teaching and research experience and has published more than 250 research papers (including 31 as conference proceedings/ book chapters). He has also authored/edited 6 books including "Lignocellulosic Biomass Production and Industrial Applications" (Wiley-Scrivener 2017).</p>
<p><b>The book covers all aspects of fermentation technology such as principles, reaction kinetics, scaling up of processes, and applications.</b> <p>The 20 chapters written by subject matter experts are divided into two parts: Principles and Applications. In the first part subjects covered include: <ul> <li>Modelling and kinetics of fermentation technology</li> <li>Sterilization techniques used in fermentation processes</li> <li>Design and types of bioreactors used in fermentation technology</li> <li>Recent advances and future prospect of fermentation technology</li> </ul> <p>The second part subjects covered include: <ul> <li>Lactic acid and ethanol production using fermentation technology</li> <li>Various industrial value-added product biosynthesis using fermentation technology</li> <li>Microbial cyp450 production and its industrial application</li> <li>Polyunsaturated fatty acid production through solid state fermentation</li> <li>Application of oleaginous yeast for lignocellulosic biomass based single cell oil production</li> <li>Utilization of micro-algal biomass for bioethanol production</li> <li>Poly-lactide production from lactic acid through fermentation technology</li> <li>Bacterial cellulose and its potential impact on industrial applications</li> </ul> <p><b>Audience</b> <p>The book will be useful for researchers and students in chemical engineering, bioprocess engineering, enzymology, environmental biotechnology, agricultural biotechnology, process engineering, polymer and environmental sciences.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €