Details

Microgrid Planning and Design


Microgrid Planning and Design

A Concise Guide
IEEE Press 1. Aufl.

von: Hassan Farhangi, Geza Joos

106,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 06.03.2019
ISBN/EAN: 9781119453536
Sprache: englisch
Anzahl Seiten: 256

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A practical guide to microgrid systems architecture, design topologies, control strategies and integration approaches</b></p> <p><i>Microgrid Planning and Design</i> offers a detailed and authoritative guide to microgrid systems. The authors - noted experts on the topic - explore what is involved in the design of a microgrid, examine the process of mapping designs to accommodate available technologies and reveal how to determine the efficacy of the final outcome. This practical book is a compilation of collaborative research results drawn from a community of experts in 8 different universities over a 6-year period. </p> <p><i>Microgrid Planning and Design</i> contains a review of microgrid benchmarks for the electric power system and covers the mathematical modeling that can be used during the microgrid design processes. The authors include real-world case studies, validated benchmark systems and the components needed to plan and design an effective microgrid system. This important guide:</p> <ul> <li>Offers a practical and up-to-date book that examines leading edge technologies related to the smart grid</li> <li>Covers in detail all aspects of a microgrid from conception to completion</li> <li>Explores a modeling approach that combines power and communication systems</li> <li>Recommends modeling details that are appropriate for the type of study to be performed</li> <li>Defines typical system studies and requirements associated with the operation of the microgrid </li> </ul> <p>Written forgraduate students and professionals in the electrical engineering industry, <i>Microgrid Planning and Design </i>is a guide to smart microgrids that can help with their strategic energy objectives such as increasing reliability, efficiency, autonomy and reducing greenhouse gases. </p>
<p>About the Authors xiii</p> <p>Disclaimer xv</p> <p>List of Figures xvii</p> <p>List of Tables xxiii</p> <p>Foreword xxv</p> <p>Preface xxvii</p> <p>Acknowledgments xxix</p> <p>Acronyms and Abbreviations xxxi</p> <p><b>1 Introduction </b><b>1</b></p> <p>1.1 Why Microgrid Research Requires a Network Approach 5</p> <p>1.2 NSERC Smart MicroGrid Network (NSMG-Net) – The Canadian Experience 7</p> <p>1.3 Research Platform 8</p> <p>1.4 Research Program and Scope 9</p> <p>1.5 Research Themes in Smart Microgrids 10</p> <p>1.5.1 Theme 1: Operation, Control, and Protection of Smart Microgrids 10</p> <p>1.5.1.1 Topic 1.1: Control, Operation, and Renewables for Remote Smart Microgrids 12</p> <p>1.5.1.2 Topic 1.2: Distributed Control, Hybrid Control, and Power Management for Smart Microgrids 12</p> <p>1.5.1.3 Topic 1.3: Status Monitoring, Disturbance Detection, Diagnostics, and Protection for Smart Microgrids 13</p> <p>1.5.1.4 Topic 1.4: Operational Strategies and Storage Technologies to Address Barriers for Very High Penetration of DG Units in Smart Microgrids 13</p> <p>1.5.2 Theme 2 Overview: Smart Microgrid Planning, Optimization, and Regulatory Issues 14</p> <p>1.5.2.1 Topic 2.1: Cost–Benefits Framework – Secondary Benefits and Ancillary Services 16</p> <p>1.5.2.2 Topic 2.2: Energy and Supply Security Considerations 16</p> <p>1.5.2.3 Topic 2.3: Demand Response Technologies and Strategies – Energy Management and Metering 16</p> <p>1.5.2.4 Topic 2.4: Integration Design Guidelines and Performance Metrics – Study Cases 17</p> <p>1.5.3 Theme 3: Smart Microgrid Communication and Information Technologies 18</p> <p>1.5.3.1 Topic 3.1: Universal Communication Infrastructure 20</p> <p>1.5.3.2 Topic 3.2: Grid Integration Requirements, Standards, Codes, and Regulatory Considerations 20</p> <p>1.5.3.3 Topic 3.3: Distribution Automation Communications: Sensors, Condition Monitoring, and Fault Detection 20</p> <p>1.5.3.4 Topic 3.4: Integrated Data Management and Portals 21</p> <p>1.6 Microgrid Design Process and Guidelines 21</p> <p>1.7 Microgrid Design Objectives 23</p> <p>1.8 Book Organization 23</p> <p><b>2 Microgrid Benchmarks </b><b>25</b></p> <p>2.1 Campus Microgrid 25</p> <p>2.1.1 Campus Microgrid Description 25</p> <p>2.1.2 Campus Microgrid Subsystems 27</p> <p>2.1.2.1 Components and Subsystems 27</p> <p>2.1.2.2 Automation and Instrumentation 28</p> <p>2.2 Utility Microgrid 30</p> <p>2.2.1 Description 30</p> <p>2.2.2 Utility Microgrid Subsystems 32</p> <p>2.3 CIGRE Microgrid 33</p> <p>2.3.1 CIGRE Microgrid Description 33</p> <p>2.3.2 CIGRE Microgrid Subsystems 35</p> <p>2.3.2.1 Load 35</p> <p>2.3.2.2 Flexibility 35</p> <p>2.4 Benchmarks Selection Justification 36</p> <p><b>3 Microgrid Elements and Modeling </b><b>37</b></p> <p>3.1 Load Model 37</p> <p>3.1.1 Current Source Based 37</p> <p>3.1.2 Grid-Tie Inverter Based 38</p> <p>3.2 Power Electronic Converter Models 39</p> <p>3.3 PV Model 41</p> <p>3.4 Wind Turbine Model 43</p> <p>3.5 Multi-DER Microgrids Modeling 44</p> <p>3.6 Energy Storage System Model 47</p> <p>3.7 Electronically Coupled DER (EC-DER) Model 49</p> <p>3.8 Synchronous Generator Model 50</p> <p>3.9 Low Voltage Networks Model 50</p> <p>3.10 Distributed Slack Model 51</p> <p>3.11 VVO/CVR Modeling 53</p> <p><b>4 Analysis and Studies Using Recommended Models </b><b>57</b></p> <p>4.1 Energy Management Studies 57</p> <p>4.2 Voltage Control Studies 57</p> <p>4.3 Frequency Control Studies 58</p> <p>4.4 Transient Stability Studies 58</p> <p>4.5 Protection Coordination and Selectivity Studies 59</p> <p>4.6 Economic Feasibility Studies 59</p> <p>4.6.1 Benefits Identification 59</p> <p>4.6.2 Reduced Energy Cost 59</p> <p>4.6.3 Reliability Improvement 60</p> <p>4.6.4 Investment Deferral 61</p> <p>4.6.5 Power Fluctuation 61</p> <p>4.6.6 Improved Efficiency 61</p> <p>4.6.7 Reduced Emission 62</p> <p>4.7 Vehicle-to-Grid (V2G) Impact Studies 62</p> <p>4.8 DER Sizing of Microgrids 62</p> <p>4.9 Ancillary Services Studies 62</p> <p>4.10 Power Quality Studies 63</p> <p>4.11 Simulation Studies and Tools 63</p> <p><b>5 Control, Monitoring, and Protection Strategies </b><b>65</b></p> <p>5.1 Enhanced Control Strategy – Level 1 Function 65</p> <p>5.1.1 Current-Control Scheme 66</p> <p>5.1.2 Voltage Regulation Scheme 68</p> <p>5.1.3 Frequency Regulation Scheme 68</p> <p>5.1.4 Enhanced Control Strategy Under Network Faults 68</p> <p>5.2 Decoupled Control Strategy – Level 1 Function 70</p> <p>5.3 Electronically Coupled Distributed Generation Control Loops – Level 1 Function 71</p> <p>5.3.1 Voltage Regulation 71</p> <p>5.3.2 Frequency Regulation 71</p> <p>5.4 Energy Storage System Control Loops – Level 1 Function 72</p> <p>5.4.1 Voltage Regulation 72</p> <p>5.4.2 Frequency Regulation 74</p> <p>5.5 Synchronous Generator (SG) Control Loops – Level 1 Function 77</p> <p>5.5.1 Voltage Regulation 77</p> <p>5.5.2 Frequency Regulation 77</p> <p>5.6 Control of Multiple Source Microgrid – Level 1 Function 77</p> <p>5.7 Fault Current Limiting Control Strategy – Level 1 Function 80</p> <p>5.8 Mitigating the Impact on Protection System – Level 1 Function 80</p> <p>5.9 Adaptive Control Strategy – Level 2 Function 81</p> <p>5.10 Generalized Control Strategy – Level 2 Function 81</p> <p>5.11 Multi-DER Control – Level 2 Function 83</p> <p>5.12 Centralized Microgrid Controller Functions – Level 3 Function 84</p> <p>5.13 Protection and Control Requirements 85</p> <p>5.14 Communication-Assisted Protection and Control 85</p> <p>5.15 Fault Current Control of DER 86</p> <p>5.16 Load Monitoring for Microgrid Control – Level 3 Function 87</p> <p>5.17 Interconnection Transformer Protection 88</p> <p>5.18 Volt-VAR Optimization Control – Level 3 Function 89</p> <p><b>6 Information and Communication Systems </b><b>91</b></p> <p>6.1 IT and Communication Requirements in a Microgrid 91</p> <p>6.1.1 HAN Communications 92</p> <p>6.1.2 LAN Communications 92</p> <p>6.1.3 WAN Communications 94</p> <p>6.2 Technological Options for Communication Systems 94</p> <p>6.2.1 Cellular/Radio Frequency 95</p> <p>6.2.2 Cable/DSL 95</p> <p>6.2.3 Ethernet 95</p> <p>6.2.4 Fiber Optic SONET/SDH and E/GPON over Fiber Optic Links 96</p> <p>6.2.5 Microwave 96</p> <p>6.2.6 Power Line Communication 96</p> <p>6.2.7 WiFi (IEEE 802.11) 96</p> <p>6.2.8 WiMAX (IEEE 802.16) 96</p> <p>6.2.9 ZigBee 97</p> <p>6.3 IT and Communication Design Examples 97</p> <p>6.3.1 Universal Communication Infrastructure 97</p> <p>6.3.2 Grid Integration Requirements, Standard, Codes, and Regulatory Considerations 97</p> <p>6.3.2.1 Recommended Signaling Scheme and Capacity Limit of PLC Under Bernoulli-Gaussian Impulsive Noise 98</p> <p>6.3.2.2 Studying and Developing Relevant Networking Techniques for an Efficient and Reliable Smart Grid Communication Network (SGCN) 98</p> <p>6.3.3 Distribution Automation 98</p> <p>6.3.3.1 Apparent Power Signature Based Islanding Detection 98</p> <p>6.3.3.2 ZigBee in Electricity Substations 99</p> <p>6.3.4 Integrated Data Management and Portals 99</p> <p>6.3.4.1 The Multi Agent Volt-VAR Optimization (VVO) Engine 99</p> <p><b>7 Power and Communication Systems </b><b>101</b></p> <p>7.1 Example of Real-Time Systems Using the IEC 61850 Communication Protocol 103</p> <p><b>8 System Studies and Requirements </b><b>105</b></p> <p>8.1 Data and Specification Requirements 105</p> <p>8.1.1 Topology-Related Characteristics 107</p> <p>8.1.2 Demand-Related Characteristics 108</p> <p>8.1.3 Economics- and Environment-Related Characteristics 108</p> <p>8.2 Microgrid Design Criteria 108</p> <p>8.2.1 Reliability and Resilience 108</p> <p>8.2.1.1 Reliability 109</p> <p>8.2.1.2 Resilience 109</p> <p>8.2.2 DER Technologies 109</p> <p>8.2.2.1 Electric Storage Systems 109</p> <p>8.2.2.2 Photovoltaic Solar Power 110</p> <p>8.2.2.3 Wind Power 111</p> <p>8.2.3 DER Sizing 112</p> <p>8.2.4 Load Prioritization 114</p> <p>8.2.5 Microgrid Operational States 114</p> <p>8.2.5.1 Grid-connected Mode 114</p> <p>8.2.5.2 Transition to Islanded Mode 115</p> <p>8.2.5.3 Islanded Mode 115</p> <p>8.2.5.4 Transition to Grid-connected Mode 116</p> <p>8.3 Design Standards and Application Guides 116</p> <p>8.3.1 ANSI/NEMA 116</p> <p>8.3.2 IEEE 116</p> <p>8.3.3 UL 118</p> <p>8.3.4 NEC 118</p> <p>8.3.5 IEC 118</p> <p>8.3.6 CIGRE 118</p> <p><b>9 Sample Case Studies for Real-Time Operation </b><b>121</b></p> <p>9.1 Operational Planning Studies 121</p> <p>9.2 Economic and Technical Feasibility Studies 122</p> <p>9.3 Policy and Regulatory Framework Studies 123</p> <p>9.4 Power-Quality Studies 125</p> <p>9.5 Stability Studies 125</p> <p>9.6 Microgrid Design Studies 128</p> <p>9.7 Communication and SCADA System Studies 129</p> <p>9.8 Testing and Evaluation Studies 129</p> <p>9.9 Example Studies 130</p> <p><b>10 Microgrid Use Cases </b><b>133</b></p> <p>10.1 Energy Management System Functional Requirements Use Case 133</p> <p>10.2 Protection 136</p> <p>10.3 Intentional Islanding 139</p> <p><b>11 Testing and Case Studies 143</b></p> <p>11.1 EMS Economic Dispatch 143</p> <p>11.1.1 Applicable Design on the Campus Microgrid 143</p> <p>11.1.2 Design Guidelines 144</p> <p>11.1.3 Multi-Objective Optimization – Example 145</p> <p>11.1.3.1 System Description 145</p> <p>11.1.3.2 Optimization Formulation 146</p> <p>11.1.4 Results and Discussion 149</p> <p>11.1.4.1 Comparison to Existing Campus DEMS 149</p> <p>11.1.4.2 Business Case Overview 152</p> <p>11.2 Voltage and Reactive Power Control 153</p> <p>11.2.1 VVO/CVR Architecture 153</p> <p>11.3 Microgrid Anti-Islanding 155</p> <p>11.3.1 Test System 156</p> <p>11.3.1.1 Distribution System 156</p> <p>11.3.1.2 Inverter System 158</p> <p>11.3.2 Tests Performed and Results 158</p> <p>11.3.2.1 Nuisance Tripping 159</p> <p>11.3.2.2 Islanding 160</p> <p>11.4 Real-Time Testing 166</p> <p>11.4.1 Hardware-In-The-Loop Real Time Test Bench 167</p> <p>11.4.2 Real-Time System Using IEC 61850 Communication Protocol 169</p> <p><b>12 Conclusion </b><b>173</b></p> <p>12.1 Challenges and Methodologies 173</p> <p>12.1.1 Theme 1 – Operation, Control, and Protection of Smart Microgrids 173</p> <p>12.1.1.1 Topic 1.1 – Control, Operation, and Renewables for Remote Smart Microgrids 174</p> <p>12.1.1.2 Topic 1.2 – Distributed Control, Hybrid Control, and Power Management for Smart Microgrids 176</p> <p>12.1.1.3 Topic 1.3 – Status Monitoring, Disturbance Detection, Diagnostics, and Protection for Smart Microgrids 180</p> <p>12.1.1.4 Topic 1.4 – Operational Strategies and Storage Technologies to Address Barriers for Very High Penetration of DG Units in Smart Microgrids 183</p> <p>12.1.2 Theme 2: Smart Microgrid Planning, Optimization, and Regulatory Issues 185</p> <p>12.1.2.1 Topic 2.1 Cost-Benefits Framework – Secondary Benefits and Ancillary Services 185</p> <p>12.1.2.2 Topic 2.2 Energy and Supply Security Considerations 187</p> <p>12.1.2.3 Topic 2.3 Demand-Response Technologies and Strategies – Energy Management and Metering 190</p> <p>12.1.2.4 Topic 2.4: Integration Design Guidelines and Performance Metrics – Study Cases 192</p> <p>12.1.3 Theme 3: Smart Microgrid Communication and Information Technologies 193</p> <p>12.1.3.1 Topic 3.1 Universal Communication Infrastructure 194</p> <p>12.1.3.2 Topic 3.2 Grid Integration Requirements, Standards, Codes, and Regulatory Considerations 195</p> <p>12.1.3.3 Topic 3.3: Distribution Automation Communications: Sensors, Condition Monitoring, and Fault Detection (Topic Leader: Meng; Collaborators: Chang, Li, Iravani, Farhangi, NB Power) 200</p> <p>12.1.3.4 Topic 3.4: Integrated Data Management and Portals 202</p> <p>12.2 Final Thoughts 204</p> <p>References 205</p> <p>Index 211</p>
<p><b>D<small>R</small>. HASSAN FARHANGI</b> is Chief System Architect and Principal Investigator of Smart Microgrid initiative at British Columbia Institute of Technology (BCIT), and Adjunct Professor at Simon Fraser University in Vancouver, Canada, and the Scientific Director and Principal Investigator of NSERC (Natural Sciences and Engineering Research Council) Pan-Canadian Smart Microgrid Network. <p><b>D<small>R</small>. GEZA JOOS</b> is a Professor in the Department of Electrical and Computer Engineering, McGill University, Canada, and holds the NSERC/Hydro-Quebec Industrial Research Chair on the Integration of Renewable Energies and Distributed Generation into the Electric Distribution Grid as well as the Canada Research Chair in Powering Information Technologies at McGill University.
<p><b>A PRACTICAL GUIDE TO MICROGRID SYSTEMS ARCHITECTURE, DESIGN TOPOLOGIES, CONTROL STRATEGIES AND INTEGRATION APPROACHES</b> <p><i>Microgrid Planning and Design</i> offers a detailed and authoritative guide to microgrid systems. The editors – noted experts on the topic – explore what is involved in the design of a microgrid, examine the process of mapping designs to accommodate available technologies and reveal how to determine the efficacy of the final outcome. This practical book is a compilation of collaborative research results drawn from a community of experts in 8 different universities over a 6-year period. <p><i>Microgrid Planning and Design</i> contains a review of microgrid benchmarks for the electric power system and covers the mathematical modeling that can be used during the microgrid design processes. The authors include real-world case studies, validated benchmark systems and the components needed to plan and design an effective microgrid system. This important guide: <ul> <li>Offers a practical and up-to-date book that examines leading edge technologies related to the smart grid</li> <li>Covers in detail all aspects of a microgrid from conception to completion</li> <li>Explores a modeling approach that combines power and communication systems</li> <li>Recommends modeling details that are appropriate for the type of study to be performed</li> <li>Defines typical system studies and requirements associated with the operation of the microgrid</li> </ul> <p>Written for graduate students and professionals in the electrical engineering industry, <i>Microgrid Planning and Design</i> is a guide to smart microgrids that can help with their strategic energy objectives such as increasing reliability, efficiency, autonomy and reducing greenhouse gases.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €