Details

Metal Oxide Nanoparticles


Metal Oxide Nanoparticles

Formation, Functional Properties, and Interfaces
1. Aufl.

von: Oliver Diwald, Thomas Berger

335,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 01.09.2021
ISBN/EAN: 9781119436799
Sprache: englisch
Anzahl Seiten: 896

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Metal Oxide Nanoparticles</b> <p><b>A complete nanoparticle resource for chemists and industry professionals</b> <p>Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. <i>Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces</i> presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. <p>This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions.<ul><li>Addresses the application of metal oxide nanoparticles and its economic impact</li><li>Examines particle synthesis, including the principles of selected bottom-up strategies</li><li>Explores nanoparticle formulation—a selection of processing and application routes</li><li>Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties</li><li>Covers metal oxide nanoparticle characterization at different length scales</li></ul><p>With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.
<p> </p> <p>List of contributors</p> <p>Preface</p> <p> </p> <p>Part I     Introduction</p> <p> </p> <p>1             Metal Oxides and Specific Functional Properties at the Nanoscale</p> <p>               <i>Oliver Diwald</i></p> <p>1.1 A Cross-Sectional Topic in Materials Science and Technology</p> <p>1.2 Metal Oxides: Bonding and Characteristic Features</p> <p>1.3 Regimes of Size-Dependent Property Changes and Confinement Effects</p> <p>1.4 Distribution of Nanoparticle Properties</p> <p>1.5 Structure and Morphology</p> <p>1.5.1 Confinement and Structural Disorder</p> <p>1.5.2 Surface Free Energy Contributions and Metastability</p> <p>1.5.3 Shape</p> <p>1.6 Electronic Structure and Defects</p> <p>1.6.1 Size-Dependent Defect Formation Energies and Their Impact on Surface Reactivity</p> <p>1.7 Surface Chemistry</p> <p>1.8 Metal Oxide Nanoparticle Ensembles as Dynamic Systems</p> <p>1.9 Organization of This Book</p> <p><i> </i></p> <p>2             Application of Metal Oxide Nanoparticles and their Economic Impact</p> <p><i>Karl-Heinz Haas</i></p> <p>2.1 Introduction</p> <p>2.1.1 Nanomaterials and Nanoobjects</p> <p>2.1.2 Selection of Metal Oxide Nanoparticles</p> <p>2.2 Scientific and Patent Landscape</p> <p>2.3 Types of Metal Oxide Nanoparticles, Properties, and Application Overview</p> <p>2.4 Use Forms of Metal Oxide Nanoparticles and Related Processing</p> <p>2.4.1 Metal Oxide Nanoparticle Powders for Ceramics</p> <p>2.4.2 Metal Oxide Nanoparticle Dispersions</p> <p>2.4.3 Composites</p> <p>2.4.3.1 Polymer Based (Bulk and Coatings)</p> <p>2.4.3.2 Metal Reinforcement</p> <p>2.4.4 Combination with Powders of Micrometer Sized particles</p> <p>2.5 Application Fields of Metal Oxide Nanoparticles</p> <p>2.5.1 Agriculture</p> <p>2.5.2 Sensors and Analytics</p> <p>2.5.3 Automotive</p> <p>2.5.4 Biomedical/Dental</p> <p>2.5.4.1 Therapy</p> <p>2.5.5 Catalysis</p> <p>2.5.6 Consumer Products: Cosmetics, Food, Textiles</p> <p>2.5.7 Construction</p> <p>2.5.8 Electronics Including Magnetics</p> <p>2.5.9 Energy</p> <p>2.5.10 Environment, Resource Efficiency, Processing</p> <p>2.5.11 Oil Field Chemicals and Petroleum Industries</p> <p>2.5.12 Optics/Optoelectronics and Photonics</p> <p>2.6 Economic Impact</p> <p>2.7 Conclusion and Outlook</p> <p> </p> <p>Part II    Particle Synthesis: Principles of Selected Bottom-up Strategies</p> <p> </p> <p>3 Nanoparticle Synthesis in the Gas Phase</p> <p><i>Matthias Niedermaier, Thomas Schwab, and Oliver Diwald</i></p> <p>3.1.Introduction</p> <p>3.2.Some Key Issues of Particle Formation in the Gas Phase and in Liquids</p> <p>3.3.Gas Phase Chemistry, Particle Dynamics, and Agglomeration</p> <p>3.4.Gas-to-Particle Conversion</p> <p>3.4.1.Physical Processes</p> <p>3.4.2.Chemical Processes</p> <p>3.5.Particle-to-Particle Conversion</p> <p>3.5.1 Approaches and Precursors</p> <p>3.5.2.Particle Formation</p> <p>3.5.3.Experimental Realization</p> <p>3.5.4.Spray Pyrolysis and Flame-Assisted Spray Pyrolysis</p> <p>3.6.Gas Phase Functionalization Approaches</p> <p> </p> <p>4             Liquid-Phase Synthesis of Metal Oxide Nanoparticles</p> <p><i>Andrea Feinle and Nicola Hüsing</i></p> <p>4.1 Introduction</p> <p>4.2 General Aspects</p> <p>4.2.1 Liquid-Phase Chemistry</p> <p>4.2.2 Nucleation, Growth, and Crystallization</p> <p>4.3 Synthetic Procedures</p> <p>4.3.1 (Co)Precipitation</p> <p>4.3.2 Sol–Gel Processing</p> <p>4.3.3 Polyol-Mediated Synthesis/Pechini Method</p> <p>4.3.4 Hot-Injection Method</p> <p>4.3.5 Hydrothermal/Solvothermal Processing</p> <p>4.3.6 Microwave-Assisted Synthesis</p> <p>4.3.7 Sonication-Assisted Synthesis</p> <p>4.3.8 Synthesis in Confined Spaces</p> <p>4.4 Summary</p> <p> </p> <p>5             Controlled Impurity Admixture: From Doped Systems to Composites</p> <p><i>Alessandro Lauria and Markus Niederberger</i></p> <p>5.1 Introduction</p> <p>5.2 Liquid-Phase Synthesis of Doped Metal Oxide Nanoparticles</p> <p>5.3 Gas-Phase Synthesis of Doped Metal Oxide Nanoparticles</p> <p>5.4 Solid-State Synthesis of Doped Metal Oxide Nanoparticles</p> <p>5.5 Phase Segregation: Formation of Heterostructures</p> <p>5.6 Core/Shell and Heteromultimers</p> <p>5.7 Summary and Conclusions</p> <p> </p> <p>Part III   Nanoparticle Formulation: A Selection of Processing and Application Routes</p> <p> </p> <p>6             Colloidal Processing</p> <p><i>Thomas Berger</i></p> <p>6.1 Towards Complex Shaped and Compositionally Well-Defined Ceramics: The Need for Colloidal Processing</p> <p>6.2 Colloidal Processing Fundamentals</p> <p>6.2.1 Interparticle Forces</p> <p>6.2.1.1 Electric Double Layer Forces</p> <p>6.2.1.2 Polymer-Induced Forces</p> <p>6.2.2 Forming and Consolidation Techniques</p> <p>6.2.2.1 Drained Casting Techniques</p> <p>6.2.2.2 Tape-Casting Techniques</p> <p>6.2.2.3 Constant Volume Techniques</p> <p>6.2.2.4 Drying and Cracking</p> <p>6.3 Rheology of Suspensions</p> <p>6.4 Electrostatic Heteroaggregation of Metal Oxide Nanoparticles</p> <p>6.4.1 Modification of Colloidal Stability by Heteroaggregation</p> <p>6.4.2 Structure Evolution upon Heteroaggregation in Binary Nanoparticle Dispersions</p> <p>6.4.3 Rheological Properties of Binary Heterocolloids</p> <p>6.4.4 Functional Properties of Heteroaggregates</p> <p>6.5 Ice-Templating-Enabled Porous Ceramic Structures: A Case Example of the Impact of Nanoparticles on Colloidal Processes and Material Properties</p> <p>6.5.1 Ice-Templating of Colloidal Particles</p> <p>6.5.2 Capabilities of Metal Oxide Nanoparticles in Ice-Templating</p> <p>6.5.2.1 Optimization of the Mechanical Properties of Green Bodies and Sintered Parts</p> <p>6.5.2.2 Hierarchical Porosity and High Surface Area Materials</p> <p>6.5.2.3 Triple Phase Boundaries Between Entangled Percolating Networks Consisting of Two Inorganic Phases and a Hierarchical Pore System</p> <p>6.6 From Colloidal Processing to Nanoparticle Assembly: Towards the Control of Particle Arrangement Over Several Length Scales</p> <p> </p> <p>7             Fabrication of Metal Oxide Nanostructures by Materials Printing</p> <p><i>Petr Dzik, Michal Veselý, and Oliver Diwald</i></p> <p>7.1 Introduction</p> <p>7.2 Traditional Coating and Printing Techniques</p> <p>7.3 Inkjet Printing</p> <p>7.3.1 A Brief Introduction into IJP Technology and the Process Scheme</p> <p>7.3.2 Functional Ink Formulation Issues</p> <p>7.3.3 Drop Generation</p> <p>7.3.4 Drop Interaction with the Substrate</p> <p>7.3.5 Drop Drying and Pattern Formation</p> <p>7.3.6 Printing Quality</p> <p>7.3.7 Equipment and Printing Devices</p> <p>7.4 Printing of Metal Oxide Structures: The Materials Aspect</p> <p>7.4.1 Insulating Metal Oxides</p> <p>7.4.2 Semiconducting Metal Oxides</p> <p>7.4.3 Conducting Metal Oxides</p> <p>7.5 Examples for Complex Printed Functional Structures: The Device Aspect</p> <p>7.5.1 Printed Photoelectrochemical Cell</p> <p>7.5.2 Flexible pH Sensors by Large Scale Layer-by-layer Inkjet Printing</p> <p>7.6 Conclusions and Outlook</p> <p> </p> <p>8             Nanoscale Sintering</p> <p><i>Kathy Lu and Kaijie Ning</i></p> <p>8.1 Background</p> <p>8.2 Challenges and New Aspects of Nanoparticle Material Sintering</p> <p>8.3 Questionable Nature of Existing Sintering Theories</p> <p>8.4 3D Reconstruction</p> <p>8.4.1 Focused Ion Beam Cross-Sectioning and SEM Imaging</p> <p>8.4.2 X-ray Microtomography</p> <p>8.5 Functions of Pores</p> <p>8.6 Sintering of Small Features</p> <p>8.6.1 New Sintering Questions</p> <p>8.6.2 Role of Pore Number in Small Feature Sintering</p> <p>8.6.3 Grain Boundary Diffusion vs. Grain Boundary Migration in Small Feature Sintering</p> <p>8.6.4 Ceramic Type Effect on Small Feature Sintering</p> <p>8.6.5 Atmosphere Effect on Small Feature Sintering</p> <p>8.7 Summary</p> <p> </p> <p>Part IV   Metal Oxide Nanoparticle Characterization at Different Length Scales</p> <p> </p> <p>9             Structure: Scattering Techniques</p> <p><i>Günther J. Redhammer</i></p> <p>9.1 Introduction</p> <p>9.1.1 Scattering and Diffraction</p> <p>9.1.2 What to Learn from a Diffraction Experiment?</p> <p>9.2 Theoretical Background</p> <p>9.2.1 Crystal Lattice, Planes, and Bragg’s Law</p> <p>9.2.1.1 Crystal Planes and Interplanar Distance</p> <p>9.2.1.2 The Reciprocal Lattice</p> <p>9.2.1.3 Bragg’s Law</p> <p>9.2.2 The Intensity of a Bragg Peak</p> <p>9.2.3 The Profile of a Bragg Peak</p> <p>9.2.3.1 Instrumental Broadening</p> <p>9.2.3.2 Sample Broadening</p> <p>9.2.3.3 Analytical Description of Peak Shapes</p> <p>9.3 Experimental Setup</p> <p>9.3.1 Single vs. Polycrystalline Samples</p> <p>9.3.2 Powder Diffraction Methods</p> <p>9.3.2.1 Reflection Geometry</p> <p>9.3.2.2 Transmission Geometry</p> <p>9.3.2.3 Grazing Incident Diffraction (GID)</p> <p>9.3.2.4 Sample Preparation</p> <p>9.4 Some Selected Applications</p> <p>9.4.1 Qualitative Phase Analysis</p> <p>9.4.2 Quantitative Phase Analysis – The Rietveld Method</p> <p>9.4.3 Microstructure Analysis: Size and Strain</p> <p>9.5 X-ray Diffraction on Magnetite Nanoparticles</p> <p>9.6 Conclusion</p> <p> </p> <p>10           Morphology, Structure, and Chemical Composition: Transmission Electron Microscopy and Elemental Analysis</p> <p><i>Joanna Gryboś, Paulina Indyka, and Zbigniew Sojka</i></p> <p>10.1 Size, Shape, and Composition of Oxide Nanoparticles</p> <p>10.2 Interaction of the Incident Electrons with a Specimen</p> <p>10.3 The Transmission Electron Microscope</p> <p>10.3.1 Microscope Design and Operation Modes</p> <p>10.3.2 Contrast Type and Image Formation</p> <p>10.3.3 Resolution Limits of TEM Images</p> <p>10.4 Imaging and Analysis of Morphology</p> <p>10.4.1 Sample Preparation</p> <p>10.4.2 Shape Retrieving</p> <p>10.4.2.1 Aligned Nanocrystals</p> <p>10.4.2.2 Randomly Oriented Nanocrystals</p> <p>10.4.3 Particle Size Determination</p> <p>10.5 Crystallographic Phase Identification – Electron Diffraction</p> <p>10.5.1 Bragg Condition – Kinematical and Dynamical Diffraction</p> <p>10.5.2 Selected Area Electron Diffraction (SAED)</p> <p>10.5.3 Nanodiffraction</p> <p>10.6 Chemical Composition Mapping – EDX and EELS Nanospectroscopy</p> <p>10.6.1 Correlating Image with Spectroscopic EDX and EELS Information – Data Cubes</p> <p>10.6.2 Composition Mapping with EDX Spectroscopy</p> <p>10.6.3 Chemical State Imaging with EELS Spectroscopy</p> <p> </p> <p>11           Electronic and Chemical Properties: X-ray Absorption and Photoemission</p> <p><i>Paolo Dolcet and Silvia Gross</i></p> <p>11.1 Introduction and Scope of the Chapter</p> <p>11.2 Basics of X-rays – Matter Interaction</p> <p>11.3 X-ray Photoelectron Spectroscopy (XPS)</p> <p>11.3.1 Theoretical Background</p> <p>11.3.2 Features and Analysis of X-ray Photoelectron Spectra</p> <p>11.3.3 XPS Investigation of Metal Oxide Nanoparticles and Metal Oxide Colloidal Suspensions</p> <p>11.3.3.1 Solid–Liquid Interfaces and Nanoparticles in Suspension: Liquid-Jet and Ambient Pressure XPS</p> <p>11.3.3.2 Valence Band XPS for the Investigation of Oxides</p> <p>11.3.4 XPS Spectrometer Equipment: Components and Sources</p> <p>11.3.5 Performing XPS Experiments</p> <p>11.3.5.1 Planning of the Analysis and Sample Preparation</p> <p>11.3.6 XPS Qualitative and Quantitative Data Analysis and Fitting</p> <p>11.4  X-ray Absorption Spectroscopy (XAS)</p> <p>11.4.1 X-ray Absorption Theory</p> <p>11.4.2 XAS for the Investigation of Metal Oxide Nanoparticles</p> <p>11.4.2.1 Materials for Oxygen Evolution Reaction</p> <p>11.4.2.2 Point Defects and Ferromagnetism</p> <p>11.4.3 Anatomy of a XAS Beamline</p> <p>11.4.4 The XAS Experiment: Obtaining Beamtime, Sample Preparation</p> <p>11.5 Case Studies for the Combined Use of XPS and XAS in Oxide Analysis</p> <p>11.6 Concluding Remarks: Complementarities and Differences of XPS and XAS</p> <p> </p> <p>12           Optical Properties: UV/Vis Diffuse Reflectance Spectroscopy and Photoluminescence</p> <p><i>Thomas Berger and Anette Trunschke</i></p> <p>12.1 Interaction of Metal Oxide Particle-Based Materials with Light</p> <p>12.2 Spectroscopic Techniques</p> <p>12.2.1 Transmission Spectroscopy</p> <p>12.2.2 Diffuse Reflectance Spectroscopy</p> <p>12.2.2.1 Kubelka–Munk Theory</p> <p>12.2.2.2 Measurement of Absorption Spectra in Diffuse Reflectance</p> <p>12.2.2.3 Experimental Constraints and Sources of Error</p> <p>12.2.2.4 Optical Accessories</p> <p>12.2.3 Photoluminescence Spectroscopy</p> <p>12.2.3.1 Principles of Photoluminescence Spectroscopy</p> <p>12.2.3.2 Inorganic Luminescent Particles</p> <p>12.2.4 <i>In Situ</i> Cells and Measurement Configurations</p> <p>12.3 Types of Transitions</p> <p>12.3.1 UV Region (5.0–2.5 eV)</p> <p>12.3.1.1 Charge Transfer (CT) Transitions</p> <p>12.3.1.2 Band-to-Band Transitions</p> <p>12.3.1.3 Excitonic Surface States in Highly Dispersed Insulating Metal Oxides</p> <p>12.3.1.4 Organic Ligands and Adsorbates</p> <p>12.3.2 Visible Region (3.5–1.5 eV)</p> <p>12.3.2.1 Metal Centered Transitions</p> <p>12.3.2.2 Localized Surface Plasmon Resonance</p> <p>12.3.3 Near-Infrared Region (1.5–0.5 nm)</p> <p>12.3.3.1 Intraband Transitions: Free Carrier Absorption</p> <p>12.3.3.2 Vibrational Transitions</p> <p>12.3.3.3 Localized Surface Plasmon Resonance in Degenerately Doped Metal Oxide Semiconductor Nanocrystals</p> <p>12.4 Case Studies</p> <p>12.4.1 Heterogeneous Catalysis</p> <p>12.4.2 Adsorption and Reaction of Porphyrins on Highly Dispersed MgO Nanocube Powders</p> <p> </p> <p>13 Vibrational Spectroscopies</p> <p><i>Christian Hess</i></p> <p>13.1 Introduction</p> <p>13.2 Basic Principles of Vibrational Spectroscopies</p> <p>13.2.1 IR Spectroscopy</p> <p>13.2.2 Raman Spectroscopy</p> <p>13.2.3 Inelastic Neutron Scattering (INS)</p> <p>13.2.4 In Situ/Operando Characterization</p> <p>13.3 Vibrational Properties of Metal Oxide Nanoparticles</p> <p>13.3.1 Structural Identification and Phase Transitions</p> <p>13.3.2 Particle Size</p> <p>13.3.3 Strain and Defects</p> <p>13.3.4 Surface Hydroxyl Groups</p> <p>13.3.5 Surface Oxygen Species</p> <p>13.4 Case Study: Ceria Nanoparticles</p> <p>13.5 Characterization of Metal Oxide Nanoparticles Under Working Conditions</p> <p>13.6 Conclusions</p> <p> </p> <p>14           Solid State Magnetic Resonance Spectroscopy of Metal Oxide Nanoparticles</p> <p><i>Yamini S. Avadhut and Martin Hartmann</i></p> <p>14.1 Introduction</p> <p>14.2 Basics of Solid-state NMR Spectroscopy</p> <p>14.2.1 Magic Angle Spinning</p> <p>14.2.2 Cross-Polarization</p> <p>14.2.3 Multiple Quantum Magic Angle Spinning</p> <p>14.3 Selected Examples</p> <p>14.4 Basics of Electron Paramagnetic Resonance Spectroscopy</p> <p>14.4.1 The Spin Hamiltonian of Paramagnetic Systems</p> <p>14.4.2 Defects</p> <p>14.4.3 Transition Metal Ions</p> <p>14.5 Selected Example</p> <p> </p> <p>15           Characterization of Surfaces and Interfaces</p> <p><i>Thomas Berger and Oliver Diwald</i></p> <p>15.1 Interfaces Determine Stability and Functional Properties: From Manufactured Metal Oxide Nanoparticles to Surface Science Studies</p> <p>15.2 From Crystal Faces to Nanocrystals: Surface Energetics and Wulff Constructions</p> <p>15.2.1 Surface Tension, Surface Stress, and Surface Energy</p> <p>15.2.2 Wulff Construction: A Starting Point for Modelling</p> <p>15.2.3 Free Energies of Particle Formation and Particle Surfaces</p> <p>15.3 Changing Interfaces and Microstructures</p> <p>15.4 The Solid–Vacuum Interface</p> <p>15.5 Solid–Vapor Interfaces: Thin Water Films as Reactive Environments</p> <p>15.6 Solid–Liquid Interfaces</p> <p>15.7 Solid–Solid Interfaces</p> <p>15.8 Experimental Approaches for Surface and Interface Characterization</p> <p>15.8.1 Gas Adsorption</p> <p>15.8.2 He Pycnometry</p> <p>15.8.3 Nonlinear Optics and Surface Specific Optical Probes</p> <p>15.8.4 Atomic Force Microscopy (AFM)</p> <p>15.8.5 Zeta Potential, Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS), and Electrochemistry</p> <p>15.8.6 Surface and Interface Energies</p> <p> </p> <p>16          Adsorption and Chemical Reactivity</p> <p><i>Oliver Diwald and Martin Hartmann</i></p> <p>16.1 Introduction</p> <p>16.2 Some Principles and Key Issues of Adsorption</p> <p>16.2.1 Physisorption, Chemisorption, and Potential Energy Diagrams</p> <p>16.2.2 Sticking Probability, Surface Residence Time, and Adsorption Isotherms</p> <p>16.3 Adsorption in Metal Oxide Nanoparticle Ensembles</p> <p>16.3.1 Microstructure and Porosity</p> <p>16.3.2 Adsorption and Diffusion</p> <p>16.4 Thermal Techniques to Characterize Sorption</p> <p>16.4.1 Thermogravimetric Analysis (TGA)</p> <p>16.4.2 Differential Thermal Analysis (DTA)</p> <p>16.4.3 Differential Scanning Calorimetry (DSC)</p> <p>16.4.4 Calorimetry</p> <p>16.5 Temperature-Programmed Techniques</p> <p>16.5.1 Temperature-Programmed Desorption (TPD)</p> <p>16.5.2 Temperature-Programmed Reduction (TPR) and Oxidation (TPO)</p> <p>16.5.3 Temperature-Programmed Surface Reaction (TPSR)</p> <p>16.6 Adsorption in Liquids – Nanoparticle Dispersions</p> <p>16.6.1 General Aspects of Adsorption in Solution</p> <p>16.6.2 Adsorption and Exchange of Ligands at the Colloidal Interface</p> <p>16.6.3 Grafting of Metal Oxide Nanoparticles with Surfactants</p> <p>16.7 Nature and Abundance of Catalytically Active Centers</p> <p>16.8 Probes to Characterize Strength and Activity of Catalytic Sites</p> <p>16.9 Catalytic Test Reactions</p> <p>16.9.1 Acidic and Basic Catalysts</p> <p>16.9.2 Redox Reactions</p> <p>16.9.3 Bifunctional Catalysis</p> <p>16.10 Stability and Aging of Metal Oxide Nanoparticles in Catalysis</p> <p> </p> <p>17           Particle Characterization Technology</p> <p><i>Alfred P. Weber</i></p> <p>17.1 Introduction</p> <p>17.2 Sampling and Sample Preparation</p> <p>17.2.1 Sampling</p> <p>17.2.2 Sampling from the Gas Phase</p> <p>17.2.3 Sampling from a Suspension and Sample Preparation</p> <p>17.3 Image Analysis Techniques</p> <p>17.3.1 Point operations</p> <p>17.3.2 Linear Filter</p> <p>17.3.3 Nonlinear Filter</p> <p>17.3.4 Morphological Filtering</p> <p>17.4 Counting Techniques for Single Suspended Nanoparticles</p> <p>17.4.1 Wide Angle Laser Light Collector</p> <p>17.4.2 Nano-Laser Doppler Anemometry (NanoLDA)</p> <p>17.4.3 Condensation Particle Counter (CPC)</p> <p>17.4.4 Nanoparticle Tracking Analysis (NTA)</p> <p>17.4.5 Comparison of NTA and Dynamic Light Scattering (DLS)</p> <p>17.5 Separation Techniques</p> <p>17.5.1 Field-Flow-Fractionation (FFF)</p> <p>17.5.2 Analytical Ultracentrifugation</p> <p>17.5.3 Differential Mobility Analyzer (DMA)</p> <p>17.5.4 Low Pressure Impactor (LPI)</p> <p>17.6 Multiparametric Particle Characterization</p> <p>17.6.1 Aerosol Photoemission Spectroscopy (APES)</p> <p>17.6.2 Multidimensional NTA on Nanosuspensions</p> <p>17.6.3 Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)</p> <p>17.7 Summary</p> <p> </p> <p>Part V    Characterization of Metal Oxide Nanoparticles with Modelling</p> <p> </p> <p>18           Atomistic Modeling of Oxide Nanoparticles</p> <p><i>Keith McKenna</i></p> <p>18.1 Introduction</p> <p>18.2 Methods</p> <p>18.2.1 Interatomic Potentials</p> <p>18.2.2 First Principles Methods</p> <p>18.2.3 QM/MM (or Embedded Cluster) Methods</p> <p>18.3 Structure of Nanoparticles</p> <p>18.3.1 Kinetic vs. Thermodynamic Approaches</p> <p>18.3.2 0D, 1D, 2D, and 3D Defects in Nanoparticles</p> <p>18.3.3 Interfaces Between Nanoparticles</p> <p>18.4 Electronic Properties</p> <p>18.4.1 Density of States</p> <p>18.4.2 Ionization Energies and Electron Affinities</p> <p>18.4.3 Optical Absorption Spectra</p> <p>18.4.4 Electron Paramagnetic Resonance</p> <p>18.5 Summary</p> <p> </p> <p>19           Modeling of Reactions at Oxide Surfaces</p> <p><i>Henrik Grönbeck</i></p> <p>19.1 Introduction</p> <p>19.2 Computational Considerations</p> <p>19.2.1 First Principles Calculations</p> <p>19.2.2 <i>Ab Initio</i> Thermodynamics</p> <p>19.2.3 Kinetic Modeling of Surface Reactions</p> <p>19.3 Some Features of Reactions on Metal Oxide Surfaces</p> <p>19.4 Adsorbate Pairing</p> <p>19.4.1 Cooperative Adsorption</p> <p>19.4.2 Effects of Electronic-Pairing in Modeling of Surface Reactions</p> <p>19.4.3 Kinetic Modeling of Reactions at Oxide Surfaces</p> <p>19.4.4 Trans-Ligand Effects</p> <p>19.5 Reactions at Nanoparticles</p> <p>19.5.1 Trends in Adsorption Properties</p> <p>19.6 Conclusions</p> <p> </p> <p>20           Mesoscale Modelling of Nanoparticle Formation</p> <p><i>Eirini Goudeli</i></p> <p>20.1 Introduction</p> <p>20.2 Nanoparticle Characterization</p> <p>20.2.1 Agglomerate Radii</p> <p>20.2.2 Fractal Dimension and Mass-Mobility Exponent</p> <p>20.2.3 Dynamic Shape Factor</p> <p>20.2.4 Relative Shape Anisotropy</p> <p>20.3 Coarse-Grained Molecular Dynamics</p> <p>20.4 Monte Carlo Simulations</p> <p>20.5 Discrete Element Method</p> <p>20.5.1 Collision Frequency Function</p> <p>20.6 Particle Dynamics</p> <p>20.7 Concluding Remarks</p> <p> </p> <p>Part IV   Nanoparticles in Biological Environments</p> <p> </p> <p>21           Biological Activity of Metal Oxide Nanoparticles</p> <p><i>Martin Himly, Mark Geppert, and Albert Duschl</i></p> <p>21.1 Bio-Nano Interaction</p> <p>21.2 Interaction of Nanoparticles with Cells</p> <p>21.2.1 Recognition of Nanoparticles by Cells</p> <p>21.2.1.1 Uptake of Nanoparticles into Cells</p> <p>21.2.1.2 Intracellular Fate and Interactions</p> <p>21.3 Uptake Routes of Nanoparticles into the Body and Their Fate There</p> <p>21.4 Biological Test Methods for Assessing Biological Activities and Hazards of Nanoparticles</p> <p>21.4.1 <i>In Vitro</i> Methods</p> <p>21.4.2 <i>In Vivo</i> Methods</p> <p>21.4.3 Biological Endpoints</p> <p>21.5 Exposure of Humans</p> <p>21.5.1 Intentional Exposure</p> <p>21.5.2 Unintentional Exposure</p> <p>21.6 Nanoparticles in the Environment</p> <p>21.7 Understanding and Regulating Risk</p> <p> </p> <p>Part VII Case Studies</p> <p> </p> <p>22           The Properties of Iron Oxide Nanoparticle Pigments</p> <p><i>Robin Klupp Taylor</i></p> <p>22.1 Introduction</p> <p>22.2 Properties of Pigments with a Focus on Iron Oxides</p> <p>22.2.1 Introduction by Way of a Commercial Pigment Example</p> <p>22.2.2 Colorimetric Properties of Pigment Films</p> <p>22.2.3 Pigments as Particle Based Optical Materials: General Considerations</p> <p>22.2.4 Radiative Transfer in a Pigment Film: Kubelka–Munk Theory</p> <p>22.2.5 Optical Properties of Metal Oxides for Color Pigments</p> <p>22.2.5.1 Defining the Complex Refractive Index</p> <p>22.2.5.2 Measuring the Complex Refractive Index</p> <p>22.2.6 Microscopic Models for Light Scattering</p> <p>22.2.6.1 Particles Much Smaller Than the Wavelength of Light</p> <p>22.2.6.2 Spherical Particles Similar in Size or Larger Than the Wavelength of Light (Lorenz–Mie Theory)</p> <p>22.2.6.3 Simulating Pigment Color Based on Spherical Particles</p> <p>22.2.6.4 Simulating Pigment Color Based on Nonspherical Particles</p> <p> </p> <p>23           Zinc Oxide Nanoparticles for Varistors</p> <p><i>Oliver Diwald</i></p> <p>23.1 Introduction</p> <p>23.2 Principle of Operation and Microstructure</p> <p>23.3 Varistor Manufacturing: The Conventional Approach in Industry</p> <p>23.4 Why Use Synthetic ZnO Nanoparticle Powders as Raw Materials</p> <p>23.5 Defect Engineering and Electronic Properties</p> <p>23.6 Impurity Admixture for Microstructure Engineering</p> <p>23.7 Synthesis of Varistor Nanoparticle Powders</p> <p>23.8 Formulation and Shaping of ZnO Powders and Dispersions</p> <p>23.9 Sintering</p> <p>23.9.1 Alternative Approaches for the Sintering of Nanostructured ZnO Green Bodies</p> <p>23.10 Cold Sintering and Ceramic–Polymer Composite Varistors</p> <p>23.11 Concluding Remarks</p> <p> </p> <p>24           Metal Oxide Nanoparticle-Based Conductometric Gas Sensors</p> <p><i>Thomas Berger</i></p> <p>24.1 Introduction</p> <p>24.2 Working Principle of Metal Oxide Particle-Based Conductometric Gas Sensors</p> <p>24.3 Porous Layers Consisting of Loaded and Doped Metal Oxide Particles</p> <p>24.3.1 Loaded Metal Oxide Particles</p> <p>24.3.2 Doped Metal Oxide Particles</p> <p>24.4 Metal Oxide Nanoparticle-Based Sensing Layers</p> <p>24.5 Fabrication of Nanoparticle-Based Porous Thick Film Sensing Layers</p> <p>24.5.1 Layer Deposition Involving Particle Dispersions</p> <p>24.5.1.1 Synthesis of Sensing Materials</p> <p>24.5.1.2 Screen Printing</p> <p>24.5.1.3 Inkjet Printing</p> <p>24.5.1.4 Drop Coating</p> <p>24.5.2 Flame Spray Pyrolysis</p> <p>24.6 Nanostructured Conductometric Gas Sensors for Breath Analysis</p> <p> </p>
<p><b>Oliver Diwald</b> is Professor in the Department of Chemistry and Physics of Materials at the Paris-Lodron University of Salzburg, Austria. His research interests include the physics and chemistry of metal oxide nanoparticle systems, characterization and engineering of defects in metal oxide nanostructures, and surface chemistry and photoexcitation studies on these materials.</p><p><b>Thomas Berger</b> is Associate Professor in the Department of Chemistry and Physics of Materials at the Paris-Lodron University of Salzburg, Austria. His research interests include electrochemistry of semiconductor oxides, photoinduced processes in metal oxide particle powders, dispersions and porous films as well as adsorption studies on these materials.</p>
<p><b>A complete nanoparticle resource for chemists and industry professionals</b></p> <p>Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. <i>Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces</i> presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. <p>This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions.<ul><li>Addresses the application of metal oxide nanoparticles and its economic impact</li><li>Examines particle synthesis, including the principles of selected bottom-up strategies</li><li>Explores nanoparticle formulation—a selection of processing and application routes</li><li>Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties</li><li>Covers metal oxide nanoparticle characterization at different length scales</li></ul><p>With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €