Details

Quantum Chemistry and Dynamics of Excited States


Quantum Chemistry and Dynamics of Excited States

Methods and Applications
1. Aufl.

von: Leticia González, Roland Lindh

250,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 26.11.2020
ISBN/EAN: 9781119417743
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An introduction to the rapidly evolving methodology of electronic excited states</b></p> <p>For academic researchers, postdocs, graduate and undergraduate students, <i>Quantum Chemistry and Dynamics of Excited States: Methods and Applications</i> reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry.</p> <p>An excellent reference for both researchers and students, <i>Excited States</i> provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems.</p> <p>Readers will learn:</p> <p>●      Essential theoretical techniques to describe the properties and dynamics of chemical systems</p> <p>●      Electronic Structure methods for stationary calculations</p> <p>●      Methods for electronic excited states from both a quantum chemical and time-dependent point of view</p> <p>●      A breakdown of the most recent developments in the past 30 years</p> <p>For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, <i>Quantum Chemistry and Dynamics of Excited States</i> provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.</p>
<p>List of Contributors xix</p> <p>Preface xxiii</p> <p><b>1 Motivation and Basic Concepts </b><b>1<br /></b><i>Sandra G</i><i>ómez, Ignacio Fdez. Galv</i><i>án, Roland Lindh, and Leticia Gonzalez</i></p> <p>1.1 Mission and Motivation 1</p> <p>1.2 Atomic Units 4</p> <p>1.3 The Molecular Hamiltonian 5</p> <p>1.4 Dirac or Bra-Ket Notation 6</p> <p>1.5 Index Definitions 7</p> <p>1.6 Second Quantization Formalism 7</p> <p>1.7 Born–Oppenheimer Approximation and Potential Energy Surfaces 9</p> <p>1.8 Adiabatic Versus Diabatic Representations 10</p> <p>1.9 Conical Intersections 11</p> <p>1.10 Further Reading 12</p> <p>1.11 Acknowledgments 12</p> <p><b>Part I Quantum Chemistry </b><b>13</b></p> <p><b>2 Time-Dependent Density Functional Theory </b><b>15<br /></b><i>Miquel Huix-Rotllant, Nicolas Ferre, and Mario Barbatti</i></p> <p>2.1 Introduction 15</p> <p>2.2 TDDFT Fundamentals 16</p> <p>2.2.1 The Runge–Gross Theorems 16</p> <p>2.2.2 The Time-Dependent Kohn–Sham Approach 18</p> <p>2.2.3 Solutions of Time-Dependent Kohn–Sham Equations 19</p> <p>2.2.3.1 Real-Time TDDFT 19</p> <p>2.2.3.2 Linear-Response TDDFT 20</p> <p>2.3 Linear-Response TDDFT in Action 22</p> <p>2.3.1 Vertical Excitations and Energy Surfaces 22</p> <p>2.3.1.1 Vertical Excitations: How Good are They? 23</p> <p>2.3.1.2 Reconstructed Energy Surfaces: How Good are They? 25</p> <p>2.3.2 Conical Intersections 28</p> <p>2.3.3 Coupling Terms and Auxiliary Wave Functions 30</p> <p>2.3.3.1 The Casida Ansatz 30</p> <p>2.3.3.2 Time-Derivative Non-Adiabatic Couplings 31</p> <p>2.3.4 Non-Adiabatic Dynamics 32</p> <p>2.4 Excited States and Dynamics with TDDFT Variants and Beyond 34</p> <p>2.5 Conclusions 35</p> <p>Acknowledgments 36</p> <p>References 36</p> <p><b>3 Multi-Configurational Density Functional Theory: Progress and Challenges </b><b>47<br /></b><i>Erik Donovan Hedeg</i><i>ård</i></p> <p>3.1 Introduction 47</p> <p>3.2 Wave Function Theory 50</p> <p>3.3 Kohn–Sham Density Functional Theory 50</p> <p>3.3.1 Density Functional Approximations 53</p> <p>3.3.2 Density Functional Theory for Excited States 54</p> <p>3.3.2.1 Issues Within the Time-Dependent Density Functional Theory Ansatz 55</p> <p>3.3.2.2 Self-Interaction Error 55</p> <p>3.3.2.3 Degeneracies, Near-Degeneracies and the Symmetry Dilemma 56</p> <p>3.4 Multi-Configurational Density Functional Theory 57</p> <p>3.4.1 Semi-Empirical Multi-Configurational Density Functional Theory 57</p> <p>3.4.2 Multi-Configurational Density Functional Theory Based the On-Top Pair Density 58</p> <p>3.4.2.1 Density Matrices and the On-Top Pair Density 59</p> <p>3.4.2.2 Energy Functional and Excited States with the On-Top Pair Density 60</p> <p>3.4.3 Multi-Configurational Density Functional Theory Based on Range-Separation 61</p> <p>3.4.3.1 Energy Functional and Excited States in Range-Separated Methods 62</p> <p>3.4.3.2 The Range-Separation Parameter in Excited State Calculations 62</p> <p>3.5 Illustrative Examples 64</p> <p>3.5.1 Excited States of Organic Molecules 64</p> <p>3.5.2 Excited States for a Transition Metal Complex 65</p> <p>3.6 Outlook 66</p> <p>Acknowledgments 67</p> <p>References 67</p> <p><b>4 Equation-of-Motion Coupled-Cluster Models </b><b>77<br /></b><i>Monika Musiał</i></p> <p>4.1 Introduction 77</p> <p>4.2 Theoretical Background 79</p> <p>4.2.1 Coupled-ClusterWave Function 79</p> <p>4.2.2 The Equation-of-Motion Approach 80</p> <p>4.2.3 Similarity-Transformed Hamiltonian 81</p> <p>4.2.4 Davidson Diagonalization Algorithm 82</p> <p>4.3 Excited States: EE-EOM-CC 84</p> <p>4.3.1 EE-EOM-CCSD Model 84</p> <p>4.3.2 EE-EOM-CCSDT Model 86</p> <p>4.3.3 EE-EOM-CC Results 87</p> <p>4.4 Ionized States: IP-EOM-CC 89</p> <p>4.4.1 IP-EOM-CCSD Model 89</p> <p>4.4.2 IP-EOM-CCSDT Model 89</p> <p>4.4.3 IP-EOM-CC Results 90</p> <p>4.5 Electron-Attached States: EA-EOM-CC 91</p> <p>4.5.1 EA-EOM-CCSD Model 92</p> <p>4.5.2 EA-EOM-CCSDT Model 92</p> <p>4.5.3 EA-EOM-CC Results 92</p> <p>4.6 Doubly-Ionized States: DIP-EOM-CC 94</p> <p>4.6.1 DIP-EOM-CCSD Model 95</p> <p>4.6.2 DIP-EOM-CCSDT Model 95</p> <p>4.6.3 DIP-EOM-CC Results 96</p> <p>4.7 Doubly Electron-Attached States: DEA-EOM-CC 97</p> <p>4.7.1 DEA-EOM-CCSD Model 98</p> <p>4.7.2 DEA-EOM-CCSDT Model 98</p> <p>4.7.3 DEA-EOM-CC Results 98</p> <p>4.8 Size-Extensivity Issue in the EOM-CC Theory 100</p> <p>4.9 Final Remarks 102</p> <p>References 103</p> <p><b>5 The Algebraic-Diagrammatic Construction Scheme for the Polarization Propagator </b><b>109<br /></b><i>Andreas Dreuw</i></p> <p>5.1 Original Derivation via Green’s Functions 110</p> <p>5.2 The Intermediate State Representation 112</p> <p>5.3 Calculation of Excited State Properties and Analysis 114</p> <p>5.3.1 Excited State Properties 114</p> <p>5.3.2 Excited-State Wave Function and Density Analyses 116</p> <p>5.4 Properties and Limitations of ADC 117</p> <p>5.5 Variants of EE-ADC 119</p> <p>5.5.1 Extended ADC(2) 119</p> <p>5.5.2 Unrestricted EE-ADC Schemes 120</p> <p>5.5.3 Spin-Flip EE-ADC Schemes 121</p> <p>5.5.4 Spin-Opposite-Scaled ADC Schemes 122</p> <p>5.5.5 Core-Valence Separated (CVS) EE-ADC 123</p> <p>5.6 Describing Molecular Photochemistry with ADC Methods 125</p> <p>5.6.1 Potential Energy Surfaces 125</p> <p>5.6.2 Environment Models within ADC 126</p> <p>5.7 Brief Summary and Perspective 126</p> <p>Bibliography 127</p> <p><b>6 Foundation of Multi-Configurational Quantum Chemistry </b><b>133<br /></b><i>Giovanni Li Manni, Kai Guther, Dongxia Ma, and Werner Dobrautz</i></p> <p>6.1 Scaling Problem in FCI, CAS and RASWave Functions 136</p> <p>6.2 Factorization and Coupling of Slater Determinants 138</p> <p>6.2.1 Slater Condon Rules 140</p> <p>6.3 Configuration State Functions 141</p> <p>6.3.1 The Unitary Group Approach (UGA) 142</p> <p>6.3.1.1 Analogy between CSFs and Spherical Harmonics 143</p> <p>6.3.1.2 Gel’fand-Tsetlin Basis 143</p> <p>6.3.1.3 Paldus andWeyl Tables 145</p> <p>6.3.1.4 The Step-Vector 148</p> <p>6.3.2 The Graphical Unitary Group Approach (GUGA) 148</p> <p>6.3.3 Evaluation of Non-Vanishing Hamiltonian Matrix Elements 153</p> <p>6.3.3.1 One-Body Coupling Coefficients 154</p> <p>6.3.3.2 Two-Body Matrix Elements 157</p> <p>6.4 Configuration Interaction Eigenvalue Problem 158</p> <p>6.4.1 Iterative Methods 159</p> <p>6.4.1.1 Lanczos Algorithm 159</p> <p>6.4.1.2 Davidson Algorithm 160</p> <p>6.4.2 Direct-CI Algorithm 162</p> <p>6.5 The CASSCF Method 165</p> <p>6.5.1 The MCSCF Parameterization 167</p> <p>6.5.2 The MCSCF Gradient and Hessian 169</p> <p>6.5.3 One-Step and Two-Step Procedures 170</p> <p>6.5.4 Augmented Hessian Method 171</p> <p>6.5.5 Matrix form of the First and Second Derivatives in MCSCF 171</p> <p>6.5.6 Quadratically Converging Method with Optimal Convergence 175</p> <p>6.5.7 Orbital-CI Coupling Terms 178</p> <p>6.5.8 Super-CI for the Orbital Optimization 179</p> <p>6.5.9 Redundancy of Active Orbital Rotations 181</p> <p>6.6 Restricted and Generalized Active Space Wave Functions 182</p> <p>6.6.1 GUGA Applied to CAS, RAS and GAS Wave Functions 184</p> <p>6.6.2 Redundancies in GASSCF Orbital Rotations 186</p> <p>6.6.3 MCSCF Molecular Orbitals 187</p> <p>6.6.4 GASSCF Applied to the Gd2 Molecule 188</p> <p>6.7 Excited States 189</p> <p>6.7.1 Multi-State CI Solver 190</p> <p>6.7.2 State-Specific and State-Averaged MCSCF 191</p> <p>6.8 Stochastic Multiconfigurational Approaches 191</p> <p>6.8.1 FCIQMC Working Equation 192</p> <p>6.8.2 Multi-Wave Function Approach for Excited States 196</p> <p>6.8.3 Sampling Reduced Density Matrices 196</p> <p>Bibliography 198</p> <p><b>7 The Density Matrix Renormalization Group for Strong Correlation in Ground and Excited States </b><b>205<br /></b><i>Leon Freitag and Markus Reiher</i></p> <p>7.1 Introduction 205</p> <p>7.2 DMRG Theory 207</p> <p>7.2.1 Renormalization Group Formulation 207</p> <p>7.2.2 Matrix Product States and Matrix Product Operators 210</p> <p>7.2.3 MPS-MPO Formulation of DMRG 214</p> <p>7.2.4 Connection between the Renormalization Group and the MPS-MPO Formulation of DMRG 217</p> <p>7.2.5 Developments to Enhance DMRG Convergence and Performance 218</p> <p>7.3 DMRG and Orbital Entanglement 218</p> <p>7.4 DMRG in Practice 220</p> <p>7.4.1 Calculating Excited States with DMRG 220</p> <p>7.4.2 Factors Affecting the DMRG Convergence and Accuracy 220</p> <p>7.4.3 Post-DMRG Methods for Dynamic Correlation and Environment Effects 221</p> <p>7.4.4 Analytical Energy Gradients and Non-Adiabatic Coupling Matrix Elements 222</p> <p>7.4.5 Tensor Network States 224</p> <p>7.5 Applications in Quantum Chemistry 225</p> <p>7.6 Conclusions 230</p> <p>Acknowledgment 231</p> <p>References 231</p> <p><b>8 Excited-State Calculations with Quantum Monte Carlo </b><b>247<br /></b><i>Jonas Feldt and Claudia Filippi</i></p> <p>8.1 Introduction 247</p> <p>8.2 Variational Monte Carlo 249</p> <p>8.3 Diffusion Monte Carlo 252</p> <p>8.4 Wave Functions and their Optimization 256</p> <p>8.4.1 Stochastic Reconfiguration Method 258</p> <p>8.4.2 Linear Method 259</p> <p>8.5 Excited States 261</p> <p>8.5.1 Energy-Based Methods 261</p> <p>8.5.2 Time-Dependent Linear-Response VMC 263</p> <p>8.5.3 Variance-Based Methods 264</p> <p>8.6 Applications to Excited States of Molecular Systems 265</p> <p>8.7 Alternatives to Diffusion Monte Carlo 269</p> <p>Bibliography 270</p> <p><b>9 Multi-Reference Configuration Interaction </b><b>277<br /></b><i>Felix Plasser and Hans Lischka</i></p> <p>9.1 Introduction 277</p> <p>9.2 Basics 278</p> <p>9.2.1 Configuration Interaction and the Variational Principle 278</p> <p>9.2.2 The Size-Extensivity Problem of Truncated CI 280</p> <p>9.2.3 Multi-Reference Configuration Spaces 282</p> <p>9.2.4 Many-Electron Basis Functions: Determinants and CSFs 286</p> <p>9.2.5 Workflow 287</p> <p>9.3 Types of MRCI 289</p> <p>9.3.1 Uncontracted and Contracted MRCI 289</p> <p>9.3.2 MRCI with Extensivity Corrections 291</p> <p>9.3.3 Types of Selection Schemes 293</p> <p>9.3.4 Construction of Orbitals 293</p> <p>9.4 Popular Implementations 294</p> <p>9.5 Conclusions 295</p> <p>References 295</p> <p><b>10 Multi-Configurational Reference Perturbation Theory with a CASSCF Reference Function </b><b>299<br /></b><i>Roland Lindh and Ignacio Fdez. Galv</i><i>án</i></p> <p>10.1 Rayleigh–Schrödinger Perturbation Theory 300</p> <p>10.1.1 The Single-State Theory 300</p> <p>10.1.1.1 The Conventional Projectional Derivation 300</p> <p>10.1.1.2 The Bi-Variational Approach 304</p> <p>10.1.2 Convergence Properties and Intruder States 308</p> <p>10.1.2.1 Real and Imaginary Shift Techniques 310</p> <p>10.2 Møller–Plesset Perturbation Theory 313</p> <p>10.2.1 The Reference Function 314</p> <p>10.2.2 The Partitioning of the Hamiltonian 315</p> <p>10.2.3 The First-Order Interacting Space and Second-Order Energy Correction 316</p> <p>10.3 State-Specific Multi-Configurational Reference Perturbation Methods 320</p> <p>10.3.1 The Generation of the Reference Hamiltonian 321</p> <p>10.3.2 CAS-MP2 Theory 322</p> <p>10.3.3 CASPT2 Theory 323</p> <p>10.3.3.1 The Partitioning of the Hamiltonian 324</p> <p>10.3.3.2 The First-Order Interacting Space 325</p> <p>10.3.3.3 Other Active Space References 328</p> <p>10.3.3.4 Benchmark Results 329</p> <p>10.3.3.5 IPEA Shift 330</p> <p>10.3.4 MRMP2 Theory 331</p> <p>10.3.4.1 The Partitioning of the Hamiltonian 331</p> <p>10.3.4.2 The First-Order Interacting Space 332</p> <p>10.3.5 NEVPT2 Theory 333</p> <p>10.3.5.1 The Partitioning of the Hamiltonian 333</p> <p>10.3.5.2 The First-Order Interacting Space 335</p> <p>10.3.6 Performance Improvements 336</p> <p>10.4 Quasi-Degenerate Perturbation Theory 338</p> <p>10.5 Multi-State Multi-Configurational Reference Perturbation Methods 341</p> <p>10.5.1 Multi-State CASPT2 Theory 341</p> <p>10.5.2 Extended MS-CASPT2 Theory 342</p> <p>10.6 Summary and Outlook 343</p> <p>Acknowledgments 345</p> <p>References 345</p> <p>Appendix 350</p> <p><b>Part II Nuclear Dynamics </b><b>355</b></p> <p><b>11 Exact Quantum Dynamics (Wave Packets) in Reduced Dimensionality </b><b>357<br /></b><i>Sebastian Reiter, Daniel Keefer, and Regina de Vivie-Riedle</i></p> <p>11.1 Introduction 357</p> <p>11.2 Fundamentals of Molecular Quantum Dynamics 358</p> <p>11.2.1 Wave Packet Dynamics 358</p> <p>11.2.2 Time-Propagator Schemes 360</p> <p>11.2.3 Excited State Wave Packet Dynamics 362</p> <p>11.2.4 Surfaces and Coupling Elements in Reactive Coordinates 362</p> <p>11.3 Choice of Dynamical Coordinates and Hamiltonian in Reduced Dimensionality 364</p> <p>11.3.1 Manual Selection by Chemical Intuition 364</p> <p>11.3.2 The <i>G</i>-Matrix Formalism 365</p> <p>11.3.2.1 General Setup 366</p> <p>11.3.2.2 Practical Computation of the <i>G</i>-Matrix Elements 367</p> <p>11.3.2.3 Photorelaxation of Uracil in Linear Reactive Coordinates 367</p> <p>11.3.3 Automatic Generation of Linear Coordinates 369</p> <p>11.3.3.1 IRC Based Approach 369</p> <p>11.3.3.2 Trajectory-Based Approach 371</p> <p>11.3.3.3 Comparison of Both Techniques for Linear Subspaces 372</p> <p>11.3.4 Automatic Generation of Non-Linear Coordinates 374</p> <p>11.4 Summary and Further Remarks 378</p> <p>References 379</p> <p><b>12 Multi-Configuration Time-Dependent Hartree Methods: From Quantum to Semiclassical and Quantum-Classical </b><b>383<br /></b><i>M. Bonfanti, G. A. Worth, and I. Burghardt</i></p> <p>12.1 Introduction 383</p> <p>12.2 Time-Dependent Variational Principle and MCTDH 385</p> <p>12.2.1 Variational Principle and Tangent Space Projections 385</p> <p>12.2.2 MCTDH: Variational Multi-Configurational Wave Functions 386</p> <p>12.2.2.1 MCTDH Wave Function <i>Ansatz </i>386</p> <p>12.2.2.2 MCTDH Equations of Motion 388</p> <p>12.2.3 ML-MCTDH: Hierarchical Representations 389</p> <p>12.3 Gaussian-Based MCTDH 390</p> <p>12.3.1 G-MCTDH and vMCG 390</p> <p>12.3.1.1 G-MCTDH Wave Function Ansatz 391</p> <p>12.3.1.2 G-MCTDH Equations of Motion 392</p> <p>12.3.1.3 vMCG Equations of Motion 393</p> <p>12.3.2 2L-GMCTDH 394</p> <p>12.3.2.1 Wave Function Ansatz 394</p> <p>12.3.2.2 Equations of Motion 395</p> <p>12.4 Quantum-Classical Multi-Configurational Approaches 396</p> <p>12.4.1 Quantum-Classical Limit of G-MCTDH 396</p> <p>12.4.2 Quantum-Classical Scheme with Finite-Width Wave Packets 398</p> <p>12.4.3 Related Approaches 399</p> <p>12.5 How to use MCTDH & Co 399</p> <p>12.6 Synopsis and Application to Donor–Acceptor Complex 400</p> <p>12.6.1 Hamiltonian, Spectral Densities, and Potential Surfaces 400</p> <p>12.6.2 Ultrafast Coherent Charge Transfer Dynamics 402</p> <p>12.6.3 Comparison of Methods 403</p> <p>12.7 Conclusions and Outlook 405</p> <p>Acknowledgments 406</p> <p>References 406</p> <p><b>13 Gaussian Wave Packets and the DD-vMCG Approach </b><b>413<br /></b><i>Graham A. Worth and Benjamin Lasorne</i></p> <p>13.1 Historical Background 413</p> <p>13.2 Basic Theory 415</p> <p>13.2.1 Gaussian Wave Packets 415</p> <p>13.2.2 General Equations of Motion 418</p> <p>13.2.2.1 Coefficients and Parameters 418</p> <p>13.2.2.2 CX-Formalism 419</p> <p>13.2.2.3 Nuclear and Electronic Degrees of Freedom 420</p> <p>13.2.3 Variational Multi-Configurational Gaussian Approach 422</p> <p>13.3 Example Calculations 424</p> <p>13.4 Tunneling Dynamics: Salicylaldimine 425</p> <p>13.5 Non-Adiabatic Dynamics: The Butatriene Cation 426</p> <p>13.6 Direct Non-Adiabatic Dynamics: Formamide 428</p> <p>13.7 Summary 431</p> <p>13.8 Practical Implementation 431</p> <p>Acknowledgments 431</p> <p>References 431</p> <p><b>14 Full and <i>Ab Initio </i>Multiple Spawning </b><b>435<br /></b><i>Basile F. E. Curchod</i></p> <p>14.1 Introduction 435</p> <p>14.2 Time-Dependent Molecular Schrödinger Equation in a Gaussian Basis 436</p> <p>14.2.1 Central Equations of Motion 436</p> <p>14.2.2 Dynamics of the Trajectory Basis Functions 439</p> <p>14.3 Full Multiple Spawning 440</p> <p>14.3.1 Full Multiple Spawning Equations 440</p> <p>14.3.2 Spawning Algorithm 442</p> <p>14.4 Extending Full Multiple Spawning 443</p> <p>14.4.1 External Field in Full Multiple Spawning 444</p> <p>14.4.2 Spin-Orbit Coupling in Full Multiple Spawning 445</p> <p>14.5 <i>Ab Initio </i>Multiple Spawning 447</p> <p>14.5.1 From Full- to <i>Ab Initio </i>Multiple Spawning 447</p> <p>14.5.2 Testing the Approximations of <i>Ab Initio </i>Multiple Spawning 449</p> <p>14.5.3 On-the-Fly <i>Ab Initio </i>Multiple Spawning 450</p> <p>14.5.4 <i>Ab Initio </i>Multiple Spawning versus Trajectory Surface Hopping 451</p> <p>14.6 Dissecting an <i>Ab Initio </i>Multiple Spawning Dynamics 454</p> <p>14.6.1 The Different Steps of an <i>Ab Initio </i>Multiple Spawning Dynamics 454</p> <p>14.6.2 Example of <i>Ab Initio </i>Multiple Spawning Dynamics – the Photo-Chemistry of Cyclohexadiene 455</p> <p>14.7 <i>In Silico </i>Photo-Chemistry with <i>Ab Initio </i>Multiple Spawning 459</p> <p>14.8 Summary 462</p> <p>References 463</p> <p><b>15 Ehrenfest Methods for Electron and Nuclear Dynamics </b><b>469<br /></b><i>Adam Kirrander and Morgane Vacher</i></p> <p>15.1 Introduction 469</p> <p>15.2 Theory of the (Simple) Ehrenfest Method 470</p> <p>15.2.1 Wave Function Ansatz 471</p> <p>15.2.2 Equations of Motion 472</p> <p>15.3 Theory of the Multi-Configurational Ehrenfest Method 474</p> <p>15.3.1 Wave Function Ansatz 474</p> <p>15.3.2 Equations of Motion 476</p> <p>15.3.3 Computational Aspects 479</p> <p>15.4 Applications 480</p> <p>15.4.1 Coupled Electron and Nuclear Dynamics Upon Sudden Ionization 481</p> <p>15.4.2 Ultrafast Scattering as a Probe of Nuclear Dynamics 485</p> <p>15.5 Conclusion 490</p> <p>References 491</p> <p><b>16 Surface Hopping Molecular Dynamics </b><b>499<br /></b><i>Sebastian Mai, Philipp Marquetand, and Leticia Gonzalez</i></p> <p>16.1 Introduction 499</p> <p>16.2 Basics of Surface Hopping 500</p> <p>16.2.1 Advantages and Disadvantages 500</p> <p>16.2.2 General Algorithm 501</p> <p>16.3 Surface Hopping Ingredients 503</p> <p>16.3.1 Nuclear Motion 503</p> <p>16.3.2 Wave Function Propagation 504</p> <p>16.3.3 Decoherence 505</p> <p>16.3.4 Surface Hopping Algorithm 507</p> <p>16.3.5 Kinetic Energy Adjustment and Frustrated Hops 509</p> <p>16.3.6 Coupling Terms and Representations 511</p> <p>16.4 Practical Remarks 513</p> <p>16.4.1 Choice of the Electronic Structure Method 513</p> <p>16.4.2 Initial Conditions 516</p> <p>16.4.3 Example Application and Trajectory Analysis 518</p> <p>16.5 Popular Implementations 521</p> <p>16.6 Conclusion and Outlook 522</p> <p>Acknowledgments 522</p> <p>References 522</p> <p><b>17 Exact Factorization of the Electron–Nuclear Wave Function: Theory and Applications </b><b>531<br /></b><i>Federica Agostini and E. K. U. Gross</i></p> <p>17.1 Introduction 531</p> <p>17.2 The Time-Dependent Molecular Problem in the Exact-Factorization Formulation 533</p> <p>17.2.1 Wave Function Ansatz 533</p> <p>17.2.2 Equations of Motion 535</p> <p>17.3 The Born–Oppenheimer Framework and the Exact Factorization 536</p> <p>17.3.1 One-Dimensional Case: Time-Dependent Potential Energy Surface 538</p> <p>17.3.2 Two-Dimensional Case: Time-Dependent Potential Energy Surface and Time-Dependent Vector Potential 542</p> <p>17.4 Trajectory-Based Solution of the Exact-Factorization Equations 545</p> <p>17.4.1 CT-MQC: The Approximations 546</p> <p>17.4.2 CT-MQC: Photo-Induced Ring Opening in Oxirane 549</p> <p>17.4.3 CT-MQC: The Algorithm 551</p> <p>17.5 The Molecular Berry Phase 553</p> <p>17.6 Conclusions 556</p> <p>Acknowledgments 556</p> <p>References 556</p> <p><b>18 Bohmian Approaches to Non-Adiabatic Molecular Dynamics </b><b>563<br /></b><i>Guillermo Albareda and Ivano Tavernelli</i></p> <p>18.1 Introduction 563</p> <p>18.2 A Practical Overview of Bohmian Mechanics 565</p> <p>18.2.1 The Postulates 565</p> <p>18.2.2 Computation of Bohmian Trajectories 566</p> <p>18.2.2.1 Trajectories from the Schrödinger Equation 566</p> <p>18.2.2.2 Trajectories from the Hamilton–Jacobi Equation 567</p> <p>18.2.2.3 Trajectories from a Complex Action 568</p> <p>18.2.3 Computation of Expectation Values 569</p> <p>18.3 The Born–Huang Picture of Molecular Dynamics 569</p> <p>18.3.1 The Molecular Schrödinger Equation in Position Space 569</p> <p>18.3.2 Schrödinger Equation in the Born–Huang Basis 570</p> <p>18.3.2.1 The Born–Oppenheimer Approximation: The Adiabatic Case 571</p> <p>18.3.2.2 Non-Adiabatic Dynamics 572</p> <p>18.4 BH-Based Approaches 573</p> <p>18.4.1 The Non-Adiabatic Bohmian Dynamics Equations (NABDY) 573</p> <p>18.4.2 Implementation in Molecular Dynamics: The Adiabatic Case 575</p> <p>18.4.3 The Approximate Quantum Potential Approach 577</p> <p>18.5 Non-BH Approaches 579</p> <p>18.5.1 The ConditionalWave Function Approach 579</p> <p>18.5.1.1 Hermitian ConditionalWave Function Approach 581</p> <p>18.5.2 The Interacting ConditionalWave Function Approach 582</p> <p>18.5.3 Time-Dependent Quantum Monte Carlo 585</p> <p>18.6 Conclusions 588</p> <p>References 589</p> <p><b>19 Semiclassical Molecular Dynamics for Spectroscopic Calculations </b><b>595<br /></b><i>Riccardo Conte and Michele Ceotto</i></p> <p>19.1 Introduction 595</p> <p>19.2 From Feynman’s Path Integral to van Vleck’s Semiclassical Propagator 598</p> <p>19.3 The Semiclassical Initial Value Representation and the Heller–Herman–Kluk–Kay Formulation 601</p> <p>19.4 A Derivation of the Heller–Herman–Kluk–Kay Propagator 603</p> <p>19.5 The Time-Averaging Filter 604</p> <p>19.6 The Multiple Coherent States SCIVR 606</p> <p>19.7 The “Divide-and-Conquer” SCIVR 610</p> <p>19.8 Mixed SCIVR Dynamics: Towards Semiclassical Spectroscopy in Condensed Phase 615</p> <p>19.9 Semiclassical Spectroscopy Workflow 618</p> <p>19.10 A Taste of Semiclassical Spectroscopy 619</p> <p>19.11 Summary and Conclusions 622</p> <p>Acknowledgments 624</p> <p>Bibliography 624</p> <p><b>20 Path-Integral Approaches to Non-Adiabatic Dynamics </b><b>629<br /></b><i>Maximilian A. C. Saller, Johan E. Runeson, and Jeremy O. Richardson</i></p> <p>20.1 Introduction 629</p> <p>20.2 Semiclassical Theory 631</p> <p>20.2.1 Mapping Approach 631</p> <p>20.2.2 Linearized Semiclassical Dynamics 632</p> <p>20.3 Non-Equilibrium Dynamics 633</p> <p>20.3.1 Spin-Boson Systems 634</p> <p>20.3.2 Non-Equilibrium Correlation Functions 636</p> <p>20.4 Non-Adiabatic Path-Integral Theory 640</p> <p>20.4.1 Mean-Field Path-Integral Sampling 640</p> <p>20.4.2 Non-Adiabatic Ring-Polymer Molecular Dynamics 641</p> <p>20.4.3 Alleviation of the Negative Sign 644</p> <p>20.4.4 Practical Implementation of Monte Carlo Sampling 644</p> <p>20.5 Equilibrium Correlation Functions 646</p> <p>20.6 Conclusions 648</p> <p>Acknowledgments 649</p> <p>References 649</p> <p>Index 655</p>
<p><b>Professor Leticia González</b> teaches at the <i>Department of Chemistry at the University of Vienna</i>, Austria. She is a theoretical chemist world-known for her work on molecular excited states and ultrafast dynamics simulations. Besides publishing over 250 papers and several reviews on excited states and dynamics, she has developed the SHARC program package to simulate non-adiabatic dynamics. <p><b>Professor Roland Lindh</b> currently teaches at <i>Uppsala University,</i> Sweden. He is a member of the editorial board of <i>International Journal of Quantum Chemistry</i> and the MOLCAS quantum chemistry program project. He co-authored the book "Multiconfigurational Quantum Chemistry" and is an expert on method development for multiconfigurational wave function theory.
<p><b>An introduction to the rapidly evolving methodology of electronic excited states</b> <p>For academic researchers, postdocs, graduate and undergraduate students, <i>Quantum Chemistry and Dynamics of Excited States: Methods and Applications</i> reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. <p>An excellent reference for both researchers and students, <i>Quantum Chemistry and Dynamics of</i> <i>Excited States</i> provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and non-adiabatic dynamics of chemical systems. <p> Readers will learn: <ul> <li>Essential theoretical techniques to describe the properties and dynamics of chemical systems</li> <li>Electronic structure methods for stationary calculations</li> <li>Methods for electronic excited states from both a quantum chemical and time-dependent point of view</li> <li>A breakdown of the most recent developments in the past 30 years</li> </ul> <p>For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, <i>Quantum Chemistry and Dynamics of Excited States</i> provides a solid education in necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €