Details

Body Sensor Networking, Design and Algorithms


Body Sensor Networking, Design and Algorithms


1. Aufl.

von: Saeid Sanei, Delaram Jarchi, Anthony G. Constantinides

102,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 28.04.2020
ISBN/EAN: 9781119390046
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A complete guide to the state of the art theoretical and manufacturing developments of body sensor network, design, and algorithms</b></p> <p>In <i>Body Sensor Networking, Design, and Algorithms</i>, professionals in the field of Biomedical Engineering and e-health get an in-depth look at advancements, changes, and developments. When it comes to advances in the industry, the text looks at cooperative networks, noninvasive and implantable sensor microelectronics, wireless sensor networks, platforms, and optimization—to name a few.</p> <p>Each chapter provides essential information needed to understand the current landscape of technology and mechanical developments. It covers subjects including Physiological Sensors, Sleep Stage Classification, Contactless Monitoring, and much more.</p> <p>Among the many topics covered, the text also includes additions such as:</p> <ul> <ul> <li>Over 120 figures, charts, and tables to assist with the understanding of complex topics</li> <li>Design examples and detailed experimental works</li> <li>A companion website featuring MATLAB and selected data sets</li> </ul> </ul> <p>Additionally, readers will learn about wearable and implantable devices, invasive and noninvasive monitoring, biocompatibility, and the tools and platforms for long-term, low-power deployment of wireless communications. It’s an essential resource for understanding the applications and practical implementation of BSN when it comes to elderly care, how to manage patients with chronic illnesses and diseases, and use cases for rehabilitation.</p>
<p>Preface xiii</p> <p>About the Companion Website xv</p> <p><b>1 Introduction </b><b>1</b></p> <p>1.1 History of Wearable Technology 1</p> <p>1.2 Introduction to BSN Technology 2</p> <p>1.3 BSN Architecture 7</p> <p>1.4 Layout of the Book 10</p> <p>References 11</p> <p><b>2 Physical, Physiological, Biological, and Behavioural States of the Human Body </b><b>17</b></p> <p>2.1 Introduction 17</p> <p>2.2 Physical State of the Human Body 17</p> <p>2.3 Physiological State of Human Body 19</p> <p>2.4 Biological State of Human Body 23</p> <p>2.5 Psychological and Behavioural State of the Human Body 24</p> <p>2.6 Summary and Conclusions 30</p> <p>References 31</p> <p><b>3 Physical, Physiological, and Biological Measurements </b><b>35</b></p> <p>3.1 Introduction 35</p> <p>3.2 Wearable Technology for Gait Monitoring 35</p> <p>3.2.1 Accelerometer and Its Application to Gait Monitoring 36</p> <p>3.2.1.1 How Accelerometers Operate 37</p> <p>3.2.1.2 Accelerometers in Practice 39</p> <p>3.2.2 Gyroscope and IMU 40</p> <p>3.2.3 Force Plates 41</p> <p>3.2.4 Goniometer 41</p> <p>3.2.5 Electromyography 41</p> <p>3.2.6 Sensing Fabric 42</p> <p>3.3 Physiological Sensors 42</p> <p>3.3.1 Multichannel Measurement of the Nerves Electric Potentials 42</p> <p>3.3.2 Other Sensors 45</p> <p>3.4 Biological Sensors 48</p> <p>3.4.1 The Structures of Biological Sensors – The Principles 48</p> <p>3.4.2 Emerging Biosensor Technologies 51</p> <p>3.5 Conclusions 51</p> <p>References 53</p> <p><b>4 Ambulatory and Popular Sensor Measurements </b><b>59</b></p> <p>4.1 Introduction 59</p> <p>4.2 Heart Rate 59</p> <p>4.2.1 HR During Physical Exercise 60</p> <p>4.3 Respiration 62</p> <p>4.4 Blood Oxygen Saturation Level 67</p> <p>4.5 Blood Pressure 70</p> <p>4.5.1 Cuffless Blood Pressure Measurement 71</p> <p>4.6 Blood Glucose 72</p> <p>4.7 Body Temperature 73</p> <p>4.8 Commercial Sensors 74</p> <p>4.9 Conclusions 75</p> <p>References 76</p> <p><b>5 Polysomnography and Sleep Analysis </b><b>83</b></p> <p>5.1 Introduction 83</p> <p>5.2 Polysomnography 84</p> <p>5.3 Sleep Stage Classification 85</p> <p>5.3.1 Sleep Stages 85</p> <p>5.3.2 EEG-Based Classification of Sleep Stages 86</p> <p>5.3.2.1 Time Domain Features 86</p> <p>5.3.2.2 Frequency Domain Features 87</p> <p>5.3.2.3 Time-frequency Domain Features 87</p> <p>5.3.2.4 Short-time Fourier Transform 88</p> <p>5.3.2.5 Wavelet Transform 88</p> <p>5.3.2.6 Matching Pursuit 88</p> <p>5.3.2.7 Empirical Mode Decomposition 89</p> <p>5.3.2.8 Nonlinear Features 89</p> <p>5.3.3 Classification Techniques 90</p> <p>5.3.3.1 Using Neural Networks 90</p> <p>5.3.3.2 Application of CNNs 92</p> <p>5.3.4 Sleep Stage Scoring Using CNN 94</p> <p>5.4 Monitoring Movements and Body Position During Sleep 96</p> <p>5.5 Conclusions 99</p> <p>References 100</p> <p><b>6 Noninvasive, Intrusive, and Nonintrusive Measurements </b><b>107</b></p> <p>6.1 Introduction 107</p> <p>6.2 Noninvasive Monitoring 107</p> <p>6.3 Contactless Monitoring 109</p> <p>6.3.1 Remote Photoplethysmography 109</p> <p>6.3.1.1 Derivation of Remote PPG 110</p> <p>6.3.2 Spectral Analysis Using Autoregressive Modelling 111</p> <p>6.3.3 Estimation of Physiological Parameters Using Remote PPG 114</p> <p>6.3.3.1 Heart Rate Estimation 114</p> <p>6.3.3.2 Respiratory Rate Estimation 116</p> <p>6.3.3.3 Blood Oxygen Saturation Level Estimation 117</p> <p>6.3.3.4 Pulse Transmit Time Estimation 118</p> <p>6.3.3.5 Video Pre-processing 119</p> <p>6.3.3.6 Selection of Regions of Interest 120</p> <p>6.3.3.7 Derivation of the rPPG Signal 120</p> <p>6.3.3.8 Processing rPPG Signals 120</p> <p>6.3.3.9 Calculation of rPTT/dPTT 121</p> <p>6.4 Implantable Sensor Systems 122</p> <p>6.5 Conclusions 123</p> <p>References 124</p> <p><b>7 Single and Multiple Sensor Networking for Gait Analysis </b><b>129</b></p> <p>7.1 Introduction 129</p> <p>7.2 Gait Events and Parameters 129</p> <p>7.2.1 Gait Events 129</p> <p>7.2.2 Gait Parameters 130</p> <p>7.2.2.1 Temporal Gait Parameters 130</p> <p>7.2.2.2 Spatial Gait Parameters 132</p> <p>7.2.2.3 Kinetic Gait Parameters 133</p> <p>7.2.2.4 Kinematic Gait Parameters 133</p> <p>7.3 Standard Gait Measurement Systems 135</p> <p>7.3.1 Foot Plantar Pressure System 135</p> <p>7.3.2 Force-plate Measurement System 135</p> <p>7.3.3 Optical Motion Capture Systems 137</p> <p>7.3.4 Microsoft Kinect Image and Depth Sensors 138</p> <p>7.4 Wearable Sensors for Gait Analysis 140</p> <p>7.4.1 Single Sensor Platforms 140</p> <p>7.4.2 Multiple Sensor Platforms 141</p> <p>7.5 Gait Analysis Algorithms Based on Accelerometer/Gyroscope 143</p> <p>7.5.1 Estimation of Gait Events 143</p> <p>7.5.2 Estimation of Gait Parameters 144</p> <p>7.5.2.1 Estimation of Orientation 144</p> <p>7.5.2.2 Estimating Angles Using Accelerometers 146</p> <p>7.5.2.3 Estimating Angles Using Gyroscopes 147</p> <p>7.5.2.4 Fusing Accelerometer and Gyroscope Data 148</p> <p>7.5.2.5 Quaternion Based Estimation of Orientation 148</p> <p>7.5.2.6 Step Length Estimation 150</p> <p>7.6 Conclusions 152</p> <p>References 152</p> <p><b>8 Popular Health Monitoring Systems </b><b>157</b></p> <p>8.1 Introduction 157</p> <p>8.2 Technology for Data Acquisition 157</p> <p>8.3 Physiological Health Monitoring Technologies 158</p> <p>8.3.1 Predicting Patient Deterioration 158</p> <p>8.3.2 Ambient Assisted Living: Monitoring Daily Living Activities 163</p> <p>8.3.3 Monitoring Chronic Obstructive Pulmonary Disease Patients 164</p> <p>8.3.4 Movement Tracking and Fall Detection/Prevention 165</p> <p>8.3.5 Monitoring Patients with Dementia 166</p> <p>8.3.6 Monitoring Patients with Parkinson’s Disease 168</p> <p>8.3.7 Odour Sensitivity Measurement 172</p> <p>8.4 Conclusions 174</p> <p>References 174</p> <p><b>9 Machine Learning for Sensor Networks </b><b>183</b></p> <p>9.1 Introduction 183</p> <p>9.2 Clustering Approaches 187</p> <p>9.2.1 <i>k</i>-means Clustering Algorithm 187</p> <p>9.2.2 Iterative Self-organising Data Analysis Technique 188</p> <p>9.2.3 Gap Statistics 188</p> <p>9.2.4 Density-based Clustering 189</p> <p>9.2.5 Affinity-based Clustering 190</p> <p>9.2.6 Deep Clustering 190</p> <p>9.2.7 Semi-supervised Clustering 191</p> <p>9.2.7.1 Basic Semi-supervised Techniques 191</p> <p>9.2.7.2 Deep Semi-supervised Techniques 191</p> <p>9.2.8 Fuzzy Clustering 192</p> <p>9.3 Classification Algorithms 193</p> <p>9.3.1 Decision Trees 193</p> <p>9.3.2 Random Forest 194</p> <p>9.3.3 Linear Discriminant Analysis 194</p> <p>9.3.4 Support Vector Machines 195</p> <p>9.3.5 <i>k</i>-nearest Neighbour 201</p> <p>9.3.6 Gaussian Mixture Model 201</p> <p>9.3.7 Logistic Regression 202</p> <p>9.3.8 Reinforcement Learning 202</p> <p>9.3.9 Artificial Neural Networks 203</p> <p>9.3.9.1 Deep Neural Networks 204</p> <p>9.3.9.2 Convolutional Neural Networks 205</p> <p>9.3.9.3 Recent DNN Approaches 207</p> <p>9.3.10 Gaussian Processes 208</p> <p>9.3.11 Neural Processes 208</p> <p>9.3.12 Graph Convolutional Networks 209</p> <p>9.3.13 Naïve Bayes Classifier 209</p> <p>9.3.14 Hidden Markov Model 210</p> <p>9.3.14.1 Forward Algorithm 212</p> <p>9.3.14.2 Backward Algorithm 212</p> <p>9.3.14.3 HMM Design 212</p> <p>9.4 Common Spatial Patterns 213</p> <p>9.5 Applications of Machine Learning in BSNs and WSNs 216</p> <p>9.5.1 Human Activity Detection 216</p> <p>9.5.2 Scoring Sleep Stages 217</p> <p>9.5.3 Fault Detection 218</p> <p>9.5.4 Gas Pipeline Leakage Detection 218</p> <p>9.5.5 Measuring Pollution Level 218</p> <p>9.5.6 Fatigue-tracking and Classification System 218</p> <p>9.5.7 Eye-blink Artefact Removal from EEG Signals 219</p> <p>9.5.8 Seizure Detection 219</p> <p>9.5.9 BCI Applications 219</p> <p>9.6 Conclusions 219</p> <p>References 220</p> <p><b>10 Signal Processing for Sensor Networks </b><b>229</b></p> <p>10.1 Introduction 229</p> <p>10.2 Signal Processing Problems for Sensor Networks 230</p> <p>10.3 Fundamental Concepts in Signal Processing 231</p> <p>10.3.1 Nonlinearity of the Medium 231</p> <p>10.3.2 Nonstationarity 232</p> <p>10.3.3 Signal Segmentation 233</p> <p>10.3.4 Signal Filtering 236</p> <p>10.4 Mathematical Data Models 237</p> <p>10.4.1 Linear Models 237</p> <p>10.4.1.1 Prediction Method 237</p> <p>10.4.1.2 Prony’s Method 238</p> <p>10.4.1.3 Singular Spectrum Analysis 240</p> <p>10.4.2 Nonlinear Modelling 242</p> <p>10.4.3 Gaussian Mixture Model 243</p> <p>10.5 Transform Domain Signal Analysis 245</p> <p>10.6 Time-frequency Domain Transforms 245</p> <p>10.6.1 Short-time Fourier Transform 245</p> <p>10.6.2 Wavelet Transform 246</p> <p>10.6.2.1 Continuous Wavelet Transform 246</p> <p>10.6.2.2 Examples of Continuous Wavelets 247</p> <p>10.6.2.3 Discrete Time Wavelet Transform 247</p> <p>10.6.3 Multiresolution Analysis 248</p> <p>10.6.4 Synchro-squeezing Wavelet Transform 249</p> <p>10.7 Adaptive Filtering 250</p> <p>10.8 Cooperative Adaptive Filtering 251</p> <p>10.8.1 Diffusion Adaptation 252</p> <p>10.9 Multichannel Signal Processing 254</p> <p>10.9.1 Instantaneous and Convolutive BSS Problems 255</p> <p>10.9.2 Array Processing 257</p> <p>10.10 Signal Processing Platforms for BANs 258</p> <p>10.11 Conclusions 259</p> <p>References 260</p> <p><b>11 Communication Systems for Body Area Networks </b><b>267</b></p> <p>11.1 Introduction 267</p> <p>11.2 Short-range Communication Systems 271</p> <p>11.2.1 Bluetooth 271</p> <p>11.2.2 Wi-Fi 272</p> <p>11.2.3 ZigBee 272</p> <p>11.2.4 Radio Frequency Identification Devices 273</p> <p>11.2.5 Ultrawideband 273</p> <p>11.2.6 Other Short-range Communication Methods 274</p> <p>11.2.7 RF Modules Available in Market 275</p> <p>11.3 Limitations, Interferences, Noise, and Artefacts 275</p> <p>11.4 Channel Modelling 276</p> <p>11.4.1 BAN Propagation Scenarios 276</p> <p>11.4.1.1 On-body Channel 276</p> <p>11.4.1.2 In-body Channel 277</p> <p>11.4.1.3 Off-body Channel 277</p> <p>11.4.1.4 Body-to-body (or Interference) Channel 278</p> <p>11.4.2 Recent Approaches to BAN Channel Modelling 278</p> <p>11.4.3 Propagation Models 279</p> <p>11.4.4 Standards and Guidelines 283</p> <p>11.5 BAN-WSN Communications 284</p> <p>11.6 Routing in WBAN 285</p> <p>11.6.1 Posture-based Routing 285</p> <p>11.6.2 Temperature-based Routing 286</p> <p>11.6.3 Cross-layer Routing 287</p> <p>11.6.4 Cluster-based Routing 288</p> <p>11.6.5 QoS-based Routing 289</p> <p>11.7 BAN-building Network Integration 290</p> <p>11.8 Cooperative BANs 290</p> <p>11.9 BAN Security 291</p> <p>11.10 Conclusions 292</p> <p>References 292</p> <p><b>12 Energy Harvesting Enabled Body Sensor Networks </b><b>301</b></p> <p>12.1 Introduction 301</p> <p>12.2 Energy Conservation 302</p> <p>12.3 Network Capacity 302</p> <p>12.4 Energy Harvesting 303</p> <p>12.5 Challenges in Energy Harvesting 304</p> <p>12.6 Types of Energy Harvesting 307</p> <p>12.6.1 Harvesting Energy from Kinetic Sources 308</p> <p>12.6.2 Energy Sources from Radiant Sources 312</p> <p>12.6.3 Energy Harvesting from Thermal Sources 312</p> <p>12.6.4 Energy Harvesting from Biochemical and Chemical Sources 313</p> <p>12.7 Topology Control 315</p> <p>12.8 Typical Energy Harvesters for BSNs 317</p> <p>12.9 Predicting Availability of Energy 318</p> <p>12.10 Reliability of Energy Storage 319</p> <p>12.11 Conclusions 320</p> <p>References 321</p> <p><b>13 Quality of Service, Security, and Privacy for Wearable Sensor Data </b><b>325</b></p> <p>13.1 Introduction 325</p> <p>13.2 Threats to a BAN 326</p> <p>13.2.1 Denial-of-service 326</p> <p>13.2.2 Man-in-the-middle Attack 327</p> <p>13.2.3 Phishing and Spear Phishing Attacks 327</p> <p>13.2.4 Drive-by Attack 327</p> <p>13.2.5 Password Attack 328</p> <p>13.2.6 SQL Injection Attack 328</p> <p>13.2.7 Cross-site Scripting Attack 328</p> <p>13.2.8 Eavesdropping 328</p> <p>13.2.9 Birthday Attack 329</p> <p>13.2.10 Malware Attack 329</p> <p>13.3 Data Security and Most Common Encryption Methods 330</p> <p>13.3.1 Data Encryption Standard (DES) 331</p> <p>13.3.2 Triple DES 331</p> <p>13.3.3 Rivest–Shamir–Adleman (RSA) 331</p> <p>13.3.4 Advanced Encryption Standard (AES) 332</p> <p>13.3.5 Twofish 334</p> <p>13.4 Quality of Service (QoS) 334</p> <p>13.4.1 Quantification of QoS 335</p> <p>13.4.1.1 Data Quality Metrics 335</p> <p>13.4.1.2 Network Quality Related Metrics 335</p> <p>13.5 System Security 337</p> <p>13.6 Privacy 339</p> <p>13.7 Conclusions 339</p> <p>References 340</p> <p><b>14 Existing Projects and Platforms </b><b>345</b></p> <p>14.1 Introduction 345</p> <p>14.2 Existing Wearable Devices 347</p> <p>14.3 BAN Programming Framework 348</p> <p>14.4 Commercial Sensor Node Hardware Platforms 348</p> <p>14.4.1 Mica2/MicaZ Motes 348</p> <p>14.4.2 TelosB Mote 349</p> <p>14.4.3 Indriya-Zigbee Based Platform 350</p> <p>14.4.4 IRIS 350</p> <p>14.4.5 iSense Core Wireless Module 351</p> <p>14.4.6 Preon32 Wireless Module 351</p> <p>14.4.7 Wasp Mote 352</p> <p>14.4.8 WiSense Mote 352</p> <p>14.4.9 panStamp NRG Mote 354</p> <p>14.4.10 Jennic JN5139 354</p> <p>14.5 BAN Software Platforms 355</p> <p>14.5.1 Titan 355</p> <p>14.5.2 CodeBlue 355</p> <p>14.5.3 RehabSPOT 356</p> <p>14.5.4 SPINE and SPINE2 356</p> <p>14.5.5 C-SPINE 356</p> <p>14.5.6 MAPS 356</p> <p>14.5.7 DexterNet 356</p> <p>14.6 Popular BAN Application Domains 356</p> <p>14.7 Conclusions 359</p> <p>References 359</p> <p><b>15 Conclusions and Suggestions for Future Research </b><b>363</b></p> <p>15.1 Summary 363</p> <p>15.2 Future Directions in BSN Research 363</p> <p>15.2.1 Smart Sensors: Intelligent, Biocompatible, and Wearable 364</p> <p>15.2.2 Big Data Problem 366</p> <p>15.2.3 Data Processing and Machine Learning 366</p> <p>15.2.4 Decentralised and Cooperative Networks 367</p> <p>15.2.5 Personalised Medicine Through Personalised Technology 367</p> <p>15.2.6 Fitting BSN to 4G and 5G Communication Systems 367</p> <p>15.2.7 Emerging Assistive Technology Applications 368</p> <p>15.2.8 Solving Problems with Energy Harvesting 368</p> <p>15.2.9 Virtual World 368</p> <p>15.3 Conclusions 369</p> <p>References 369</p> <p>Index 373</p>
<p><b>Saeid Sanei</b> is a Professor of Biomedical Signal Processing and Machine Learning at Nottingham Trent University and a Visiting Professor to Imperial College London, in the United Kingdom. His major contributions in advanced signal processing techniques such as tensor factorization, cooperative networking, compressive sensing, statistical signal processing, and subspace analysis have applications in physiological signal processing and sensor networks as explored in his three published monograms and over 400 publications. <p><b>Delaram Jarchi</b> is<b></b> currently a Lecturer at Essex University. She has been working intensively on sensor networks design and algorithms levels. Her research is focused on designing new algorithms and validation of commercial wearable sensors for robust estimation of physiological parameters such as heart rate, respiratory rate and blood oxygen saturation levels in very unobtrusive ways. She is a senior member of IEEE since 2018. <p><b>Anthony G. Constantinides</b> is a Professor at Imperial College of London UK. He is an IEEE acknowledged pioneer in signal processing with research interests that span a wide range of applications of the area. Amongst these and relevant to the present book are included topics such as data analytics, acquisition, sensing, transmission, and compression.
<p><b>A complete guide to the state of the art theoretical and manufacturing developments of body sensor network, design and algorithms</b> <p>In<i> Body Sensor Networking, Design and Algorithms</i>, professionals in the field of Biomedical Engineering and e-health get an in-depth look at advancements, changes, and developments. When it comes to advances in the industry, the text looks at cooperative networks, noninvasive and implantable sensor microelectronics, wireless sensor networks, platforms, and optimization—to name a few. <p>Each chapter provides essential information needed to understand the current landscape of technology and mechanical developments. It covers subjects including Physiological Sensors, Sleep Stage Classification, Contactless Monitoring and much more. <p>Among the many topics covered, the text also includes additions such as: <ul> <li>Over 120 figures, charts, and tables to assist with the understanding of complex topics</li> <li>Design examples and detailed experimental works</li> <li>A companion website featuring MATLAB coding and selected data sets</li> </ul> <p>Additionally, readers will learn about wearable and implantable devices, invasive and noninvasive monitoring, biocompatibility, and the tools and platforms for long-term, low-power deployment of wireless communications. It's an essential resource for understanding the applications and practical implementation of BSN when it comes to elderly care, how to manage patients with chronic illnesses and diseases, and use cases for rehabilitation.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €