Details

Geostatistical Functional Data Analysis


Geostatistical Functional Data Analysis


Wiley Series in Probability and Statistics, Band 46 1. Aufl.

von: Jorge Mateu, Ramon Giraldo

100,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 16.11.2021
ISBN/EAN: 9781119387909
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Geostatistical Functional Data Analysis</b> <p><b>Explore the intersection between geostatistics and functional data analysis with this insightful new reference</b> <p><i>Geostatistical Functional Data Analysis </i>presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. <p>Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: <ul><li>A thorough introduction to the spatial kriging methodology when working with functions</li> <li>A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations</li> <li>Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region</li> <li>In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis</li></ul> <p>Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, <i>Geostatistical Functional Data Analysis</i> will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
<p>List of Contributors xiii</p> <p>Foreword xvi</p> <p><b>1 Introduction to Geostatistical Functional Data Analysis </b><b>1<br /> </b><i>Jorge Mateu and Ramón Giraldo</i></p> <p>1.1 Spatial Statistics 1</p> <p>1.2 Spatial Geostatistics 7</p> <p>1.2.1 Regionalized Variables 7</p> <p>1.2.2 Random Functions 7</p> <p>1.2.3 Stationarity and Intrinsic Hypothesis 9</p> <p>1.3 Spatiotemporal Geostatistics 12</p> <p>1.3.1 Relevant Spatiotemporal Concepts 12</p> <p>1.3.2 Spatiotemporal Kriging 16</p> <p>1.3.3 Spatiotemporal Covariance Models 17</p> <p>1.4 Functional Data Analysis in Brief 18</p> <p>References 22</p> <p><b>Part I Mathematical and Statistical Foundations </b><b>27</b></p> <p><b>2 Mathematical Foundations of Functional Kriging in Hilbert Spaces and Riemannian Manifolds </b><b>29<br /> </b><i>Alessandra Menafoglio, Davide Pigoli, and Piercesare Secchi</i></p> <p>2.1 Introduction 29</p> <p>2.2 Definitions and Assumptions 30</p> <p>2.3 Kriging Prediction in Hilbert Space: A Trace Approach 33</p> <p>2.3.1 Ordinary and Universal Kriging in Hilbert Spaces 33</p> <p>2.3.2 Estimating the Drift 36</p> <p>2.3.3 An Example: Trace-Variogram in Sobolev Spaces 37</p> <p>2.3.4 An Application to Nonstationary Prediction of Temperatures Profiles 39</p> <p>2.4 An Operatorial Viewpoint to Kriging 42</p> <p>2.5 Kriging for Manifold-Valued Random Fields 45</p> <p>2.5.1 Residual Kriging 45</p> <p>2.5.2 An Application to Positive Definite Matrices 47</p> <p>2.5.3 Validity of the Local Tangent Space Approximation 49</p> <p>2.6 Conclusion and Further Research 53</p> <p>References 53</p> <p><b>3 Universal, Residual, and External Drift Functional Kriging </b><b>55<br /> </b><i>Maria Franco-Villoria and Rosaria Ignaccolo</i></p> <p>3.1 Introduction 56</p> <p>3.2 Universal Kriging for Functional Data (UKFD) 56</p> <p>3.3 Residual Kriging for Functional Data (ResKFD) 58</p> <p>3.4 Functional Kriging with External Drift (FKED) 60</p> <p>3.5 Accounting for Spatial Dependence in Drift Estimation 61</p> <p>3.5.1 Drift Selection 62</p> <p>3.6 Uncertainty Evaluation 62</p> <p>3.7 Implementation Details in R 64</p> <p>3.7.1 Example: Air Pollution Data 64</p> <p>3.8 Conclusions 69</p> <p>References 71</p> <p><b>4 Extending Functional Kriging When Data Are Multivariate Curves: Some Technical Considerations and Operational Solutions </b><b>73<br /> </b><i>David Nerini, Claude Manté, and Pascal Monestiez</i></p> <p>4.1 Introduction 73</p> <p>4.2 Principal Component Analysis for Curves 74</p> <p>4.2.1 Karhunen–Loève Decomposition 74</p> <p>4.2.2 Dealing with a Sample 76</p> <p>4.3 Functional Kriging in a Nutshell 78</p> <p>4.3.1 Solution Based on Basis Functions 79</p> <p>4.3.2 Estimation of Spatial Covariances 81</p> <p>4.4 An Example with the Precipitation Observations 82</p> <p>4.4.1 Fitting Variogram Model 83</p> <p>4.4.2 Making Prediction 83</p> <p>4.5 Functional Principal Component Kriging 85</p> <p>4.6 Multivariate Kriging with Functional Data 88</p> <p>4.6.1 Multivariate FPCA 91</p> <p>4.6.2 MFPCA Displays 93</p> <p>4.6.3 Multivariate Functional Principal Component Kriging 94</p> <p>4.6.4 Mixing Temperature and Precipitation Curves 96</p> <p>4.7 Discussion 98</p> <p>4.A Appendices 100</p> <p>4.A.1 Computation of the Kriging Variance 100</p> <p>References 102</p> <p><b>5 Geostatistical Analysis in Bayes Spaces: Probability Densities and Compositional Data </b><b>104<br /> </b><i>Alessandra Menafoglio, Piercesare Secchi, and Alberto Guadagnini</i></p> <p>5.1 Introduction and Motivations 104</p> <p>5.2 Bayes Hilbert Spaces: Natural Spaces for Functional Compositions 105</p> <p>5.3 A Motivating Case Study: Particle-Size Data in Heterogeneous Aquifers –Data Description 108</p> <p>5.4 Kriging Stationary Functional Compositions 110</p> <p>5.4.1 Model Description 110</p> <p>5.4.2 Data Preprocessing 112</p> <p>5.4.3 An Example of Application 113</p> <p>5.4.4 Uncertainty Assessment 116</p> <p>5.5 Analyzing Nonstationary Fields of FCs 119</p> <p>5.6 Conclusions and Perspectives 123</p> <p>References 124</p> <p><b>6 Spatial Functional Data Analysis for Probability Density Functions: Compositional Functional Data vs. Distributional Data Approach </b><b>128<br /> </b><i>Elvira Romano, Antonio Irpino, and Jorge Mateu</i></p> <p>6.1 FDA and SDA When Data Are Densities 130</p> <p>6.1.1 Features of Density Functions as Compositional Functional Data 131</p> <p>6.1.2 Features of Density Functions as Distributional Data 135</p> <p>6.2 Measures of Spatial Association for Georeferenced Density Functions 138</p> <p>6.2.1 Identification of Spatial Clusters by Spatial Association Measures for Density Functions 139</p> <p>6.3 Real Data Analysis 141</p> <p>6.3.1 The SDA Distributional Approach 143</p> <p>6.3.2 The Compositional–Functional Approach 145</p> <p>6.3.3 Discussion 147</p> <p>6.4 Conclusion 149</p> <p>Acknowledgments 151</p> <p>References 151</p> <p><b>Part II Statistical Techniques for Spatially Correlated Functional Data </b><b>155</b></p> <p><b>7 Clustering Spatial Functional Data </b><b>157<br /> </b><i>Vincent Vandewalle, Cristian Preda, and Sophie Dabo-Niang</i></p> <p>7.1 Introduction 157</p> <p>7.2 Model-Based Clustering for Spatial Functional Data 158</p> <p>7.2.1 The Expectation–Maximization (EM) Algorithm 160</p> <p>7.2.1.1 E Step 161</p> <p>7.2.1.2 M Step 161</p> <p>7.2.2 Model Selection 161</p> <p>7.3 Descendant Hierarchical Classification (HC) Based on Centrality Methods 162</p> <p>7.3.1 Methodology 164</p> <p>7.4 Application 165</p> <p>7.4.1 Model-Based Clustering 167</p> <p>7.4.2 Hierarchical Classification 169</p> <p>7.5 Conclusion 171</p> <p>References 172</p> <p><b>8 Nonparametric Statistical Analysis of Spatially Distributed Functional Data </b><b>175<br /> </b><i>Sophie Dabo-Niang, Camille Ternynck, Baba Thiam, and Anne-Françoise Yao</i></p> <p>8.1 Introduction 175</p> <p>8.2 Large Sample Properties 178</p> <p>8.2.1 Uniform Almost Complete Convergence 180</p> <p>8.3 Prediction 181</p> <p>8.4 Numerical Results 184</p> <p>8.4.1 Bandwidth Selection Procedure 184</p> <p>8.4.2 Simulation Study 185</p> <p>8.5 Conclusion 193</p> <p>8.A Appendix 194</p> <p>8.A.1 Some Preliminary Results for the Proofs 194</p> <p>8.A.2 Proofs 196</p> <p>8.A.2.1 Proof of Theorem 8.1 196</p> <p>8.A.2.2 Proof of Lemma A.3 196</p> <p>8.A.2.3 Proof of Lemma A.4 196</p> <p>8.A.2.4 Proof of Lemma A.5 201</p> <p>8.A.2.5 Proof of Lemma A.6 201</p> <p>8.A.2.6 Proof of Theorem 8.2 202</p> <p>References 207</p> <p><b>9 A Nonparametric Algorithm for Spatially Dependent Functional Data: Bagging Voronoi for Clustering, Dimensional Reduction, and Regression </b><b>211<br /> </b><i>Valeria Vitelli, Federica Passamonti, Simone Vantini, and Piercesare Secchi</i></p> <p>9.1 Introduction 211</p> <p>9.2 The Motivating Application 212</p> <p>9.2.1 Data Preprocessing 214</p> <p>9.3 The Bagging Voronoi Strategy 216</p> <p>9.4 Bagging Voronoi Clustering (BVClu) 218</p> <p>9.4.1 BVClu of the Telecom Data 221</p> <p>9.4.1.1 Setting the BVClu Parameters 221</p> <p>9.4.1.2 Results 223</p> <p>9.5 Bagging Voronoi Dimensional Reduction (BVDim) 223</p> <p>9.5.1 BVDim of the Telecom Data 225</p> <p>9.5.1.1 Setting the BVDim Parameters 225</p> <p>9.5.1.2 Results 227</p> <p>9.6 Bagging Voronoi Regression (BVReg) 231</p> <p>9.6.1 Covariate Information: The DUSAF Data 232</p> <p>9.6.2 BVReg of the Telecom Data 234</p> <p>9.6.2.1 Setting the BVReg Parameters 234</p> <p>9.6.2.2 Results 235</p> <p>9.7 Conclusions and Discussion 236</p> <p>References 239</p> <p><b>10 Nonparametric Inference for Spatiotemporal Data Based on Local Null Hypothesis Testing for Functional Data </b><b>242<br /> </b><i>Alessia Pini and Simone Vantini</i></p> <p>10.1 Introduction 242</p> <p>10.2 Methodology 244</p> <p>10.2.1 Comparing Means of Two Functional Populations 244</p> <p>10.2.2 Extensions 248</p> <p>10.2.2.1 Multiway FANOVA 249</p> <p>10.3 Data Analysis 250</p> <p>10.4 Conclusion and FutureWorks 256</p> <p>References 258</p> <p><b>11 Modeling Spatially Dependent Functional Data by Spatial Regression with Differential Regularization </b><b>260<br /> </b><i>Mara S. Bernardi and Laura M. Sangalli</i></p> <p>11.1 Introduction 260</p> <p>11.2 Spatial Regression with Differential Regularization for Geostatistical Functional Data 264</p> <p>11.2.1 A Separable Spatiotemporal Basis System 265</p> <p>11.2.2 Discretization of the Penalized Sum-of-Square Error Functional 268</p> <p>11.2.3 Properties of the Estimators 271</p> <p>11.2.4 Model Without Covariates 273</p> <p>11.2.5 An Alternative Formulation of the Model 274</p> <p>11.3 Simulation Studies 274</p> <p>11.4 An Illustrative Example: Study of the Waste Production in Venice Province 278</p> <p>11.4.1 The Venice Waste Dataset 278</p> <p>11.4.2 Analysis of Venice Waste Data by Spatial Regression with Differential Regularization 279</p> <p>11.5 Model Extensions 282</p> <p>References 283</p> <p><b>12 Quasi-maximum Likelihood Estimators for Functional Linear Spatial Autoregressive Models </b><b>286<br /> </b><i>Mohamed-Salem Ahmed, Laurence Broze, Sophie Dabo-Niang, and Zied Gharbi</i></p> <p>12.1 Introduction 286</p> <p>12.2 Model 288</p> <p>12.2.1 Truncated Conditional Likelihood Method 291</p> <p>12.3 Results and Assumptions 293</p> <p>12.4 Numerical Experiments 298</p> <p>12.4.1 Monte Carlo Simulations 298</p> <p>12.4.2 Real Data Application 305</p> <p>12.5 Conclusion 312</p> <p>12.A Appendix 313</p> <p>Proof of Proposition 12.A.1 313</p> <p>Proof of Theorem 12.1 314</p> <p>Proof of Theorem 12.2 317</p> <p>Proof of Theorem 12.3 319</p> <p>Proof of Lemma 12.A.2 322</p> <p>Proof of Lemma 12.A.3 322</p> <p>Proof of Lemma 12.A.5 323</p> <p>References 325</p> <p><b>13 Spatial Prediction and Optimal Sampling for Multivariate Functional Random Fields </b><b>329<br /> </b><i>Martha Bohorquez, Ramón Giraldo, and Jorge Mateu</i></p> <p>13.1 Background 329</p> <p>13.1.1 Multivariate Spatial Functional Random Fields 329</p> <p>13.1.2 Functional Principal Components 330</p> <p>13.1.3 The Spatial Random Field of Scores 331</p> <p>13.2 Functional Kriging 332</p> <p>13.2.1 Ordinary Functional Kriging (OFK) 332</p> <p>13.2.2 Functional Kriging Using Scalar Simple Kriging of the Scores (FKSK) 333</p> <p>13.2.3 Functional Kriging Using Scalar Simple Cokriging of the Scores (FKCK) 333</p> <p>13.3 Functional Cokriging 336</p> <p>13.3.1 Cokriging with Two Functional Random Fields 336</p> <p>13.3.2 Cokriging with P Functional Random Fields 338</p> <p>13.4 Optimal Sampling Designs for Spatial Prediction of Functional Data 340</p> <p>13.4.1 Optimal Spatial Sampling for OFK 341</p> <p>13.4.2 Optimal Spatial Sampling for FKSK 341</p> <p>13.4.3 Optimal Spatial Sampling for FKCK 342</p> <p>13.4.4 Optimal Spatial Sampling for Functional Cokriging 343</p> <p>13.5 Real Data Analysis 344</p> <p>13.6 Discussion and Conclusions 348</p> <p>References 348</p> <p><b>Part III Spatio–Temporal Functional Data </b><b>351</b></p> <p><b>14 Spatio–temporal Functional Data Analysis </b><b>353<br /> </b><i>Gregory Bopp, John Ensley, Piotr Kokoszka, and Matthew Reimherr</i></p> <p>14.1 Introduction 353</p> <p>14.2 Randomness Test 355</p> <p>14.3 Change-Point Test 359</p> <p>14.4 Separability Tests 362</p> <p>14.5 Trend Tests 365</p> <p>14.6 Spatio–Temporal Extremes 369</p> <p>References 373</p> <p><b>15 A Comparison of Spatiotemporal and Functional Kriging Approaches </b><b>375<br /> </b><i>Johan Strandberg, Sara Sjöstedt de Luna, and Jorge Mateu</i></p> <p>15.1 Introduction 375</p> <p>15.2 Preliminaries 376</p> <p>15.3 Kriging 378</p> <p>15.3.1 Functional Kriging 378</p> <p>15.3.1.1 Ordinary Kriging for Functional Data 378</p> <p>15.3.1.2 Pointwise Functional Kriging 380</p> <p>15.3.1.3 Functional Kriging Total Model 381</p> <p>15.3.2 Spatiotemporal Kriging 382</p> <p>15.3.3 Evaluation of Kriging Methods 384</p> <p>15.4 A Simulation Study 385</p> <p>15.4.1 Separable 385</p> <p>15.4.2 Non-separable 390</p> <p>15.4.3 Nonstationary 391</p> <p>15.5 Application: Spatial Prediction of Temperature Curves in the Maritime Provinces of Canada 394</p> <p>15.6 Concluding Remarks 400</p> <p>References 400</p> <p><b>16 From Spatiotemporal Smoothing to Functional Spatial Regression: a Penalized Approach </b><b>403<br /> </b><i>Maria Durban, Dae-Jin Lee, María del Carmen Aguilera Morillo, and Ana M. Aguilera</i></p> <p>16.1 Introduction 403</p> <p>16.2 Smoothing Spatial Data via Penalized Regression 404</p> <p>16.3 Penalized Smooth Mixed Models 407</p> <p>16.4 P-spline Smooth ANOVA Models for Spatial and Spatiotemporal data 409</p> <p>16.4.1 Simulation Study 411</p> <p>16.5 P-spline Functional Spatial Regression 413</p> <p>16.6 Application to Air Pollution Data 415</p> <p>16.6.1 Spatiotemporal Smoothing 416</p> <p>16.6.2 Spatial Functional Regression 416</p> <p>Acknowledgments 421</p> <p>References 421</p> <p>Index 424</p>
<p><b>Jorge Mateu </b>is Full Professor of Statistics at the Department of Mathematics of University Jaume I of Castellon. His research focuses on stochastic processes with a particular interest in spatial and spatio-temporal point processes and geostatistics.</p> <p><b>Ramón Giraldo </B>is Full Professor of Statistics at the Department of Statistics at the Universidad Nacional de Colombia. His research focuses on non-parametric statistics, functional data analysis, and spatial and spatio-temporal geostatistics.
<p><b>Explore the intersection between geostatistics and functional data analysis with this insightful new reference</b></p> <p><i>Geostatistical Functional Data Analysis </i>presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. <p>Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: <ul><li>A thorough introduction to the spatial kriging methodology when working with functions</li> <li>A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations</li> <li>Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region</li> <li>In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis</li></ul> <p>Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, <i>Geostatistical Functional Data Analysis</i> will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.

Diese Produkte könnten Sie auch interessieren:

Statistics for Microarrays
Statistics for Microarrays
von: Ernst Wit, John McClure
PDF ebook
90,99 €