Details

Diatoms


Diatoms

Fundamentals and Applications
1. Aufl.

von: Joseph Seckbach, Richard Gordon

278,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 01.07.2019
ISBN/EAN: 9781119370727
Sprache: englisch
Anzahl Seiten: 690

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The aim of this new book series (<i>Diatoms: Biology and Applications</i>) is to provide a comprehensive and reliable source of information on diatom biology and applications. The first book of the series, Diatoms Fundamentals & Applications, is wide ranging, starting with the contributions of amateurs and the beauty of diatoms, to details of how their shells are made, how they bend light to their advantage and ours, and major aspects of their biochemistry (photosynthesis and iron metabolism). The book then delves into the ecology of diatoms living in a wide range of habitats, and look at those few that can kill or harm us. The book concludes with a wide range of applications of diatoms, in forensics, manufacturing, medicine, biofuel and agriculture. The contributors are leading international experts on diatoms. This book is for a wide audience researchers, academics, students, and teachers of biology and related disciplines, written to both act as an introduction to diatoms and to present some of the most advanced research on them.</p>
<p>Foreword xvii</p> <p>Preface xxiii</p> <p><b>1 A Memorial to Frithjof Sterrenburg: The Importance of the Amateur Diatomist 1<br /> </b><i>Janice L. Pappas</i></p> <p>1.1 Introduction 1</p> <p>1.2 Background and Interests 3</p> <p>1.3 The Personality of an Amateur Diatomist 7</p> <p>1.4 The Amateur Diatomist and the Importance of Collections 11</p> <p>1.5 The Amateur Diatomist as Expert in the Tools of the Trade 12</p> <p>1.6 The Amateur Diatomist as Peer-Reviewed Scientific Contributor 15</p> <p>1.7 Concluding Remarks 20</p> <p>Acknowledgments 21</p> <p>References 21</p> <p><b>2 Alex Altenbach – In Memoriam of a Friend 29<br /> </b><i>Wladyslaw Altermann</i></p> <p>References 31</p> <p><b>3 The Beauty of Diatoms 33<br /> </b><i>Mary Ann Tiffany and Stephen S. Nagy</i></p> <p>3.1 Early History of Observations of Diatoms 33</p> <p>3.2 Live Diatoms 35</p> <p>3.3 Shapes and Structures 35</p> <p>3.4 Diatom Beauty at Various Scales 36</p> <p>3.5 Valves During Morphogenesis 37</p> <p>3.6 Jamin-Lebedeff Interference Contrast Microscopy 39</p> <p>3.7 Conclusion 40</p> <p>Acknowledgments 40</p> <p>References 41</p> <p><b>4 Current Diatom Research in China 43<br /> </b><i>Yu Xin Zhang</i></p> <p>4.1 Diatoms for Energy Conversion and Storage 43</p> <p>4.1.1 Introduction 43</p> <p>4.1.2 Diatom Silica: Structure, Properties and Their Optimization 46</p> <p>4.1.3 Diatoms for Lithium Ion Battery Materials 48</p> <p>4.1.4 Diatoms for Energy Storage: Supercapacitors 51</p> <p>4.1.5 Diatoms for Solar Cells 56</p> <p>4.1.6 Diatoms for Hydrogen Storage 58</p> <p>4.1.7 Diatoms for Thermal Energy Storage 59</p> <p>4.2 Diatoms for Water Treatment 61</p> <p>4.2.1 Support for Preparation of Diatomite-Based Adsorption Composites 61</p> <p>4.2.2 Catalyst and Template for Preparation of Porous Carbon Materials 63</p> <p>4.2.3 Modification of Surface and Porous Structure 66</p> <p>4.2.4 Support for Preparation of Diatomite-Based Metal Oxide Composites 75</p> <p>4.3 Study of Tribological Performances of Compound Dimples Based on Diatoms Shell Structures 86</p> <p>References 88</p> <p><b>5 Cellular Mechanisms of Diatom Valve Morphogenesis 99<br /> </b><i>Yekaterina D. Bedoshvili and Yelena V. Likhoshway</i></p> <p>5.1 Introduction 99</p> <p>5.2 Valve Symmetry 100</p> <p>5.3 Valve Silification Order 102</p> <p>5.4 Silica Within SDV 103</p> <p>5.5 Macromorphogenesis Control 104</p> <p>5.6 Cytoskeletal Control of Morphogenesis 106</p> <p>5.7 The Role of Vesicles in Morphogenesis 107</p> <p>5.8 Valve Exocytosis and the SDV Origin 108</p> <p>5.9 Conclusion 110</p> <p>References 110</p> <p><b>6 Application of Focused Ion Beam Technique in Taxonomy-Oriented Research on Ultrastructure of Diatoms 115<br /> </b><i>Andrzej Witkowski, Tomasz Płociński, Justyna Grzonka, Izabela Zgłobicka, Małgorzata Bąk, Przemysław Dąbek, Ana I. Gomes and Krzysztof J. Kurzydłowski</i></p> <p>6.1 Introduction 116</p> <p>6.2 Material and Methods 117</p> <p>6.3 Results 117</p> <p>6.3.1 Complex Stria Ultrastructure 117</p> <p>6.3.1.1 <i>Biremis lucens (Hustedt) Sabbe</i>, Witkowski & Vyverman 1995 117</p> <p>6.3.1.2 <i>Olifantiella mascarenica </i>Riaux-Gobin & Compere 2009 120</p> <p>6.4 Discussion 123</p> <p>6.4.1 Cultured Versus Wild Specimens 124</p> <p>6.5 Conclusions 124</p> <p>Acknowledgements 126</p> <p>References 126</p> <p><b>7 On Light and Diatoms: A Photonics and Photobiology Review 129<br /></b><i>Mohamed M. Ghobara, Nirmal Mazumder, Vandana Vinayak, Louisa Reissig, Ille C. Gebeshuber, Mary Ann Tiffany and Richard Gordon</i></p> <p>7.1 Introduction 130</p> <p>7.2 The Unique Multiscale Structure of the Diatom Frustules 130</p> <p>7.3 Optical Properties of Diatom Frustules 139</p> <p>7.3.1 The Frustule as a Box with Photonic Crystal Walls 143</p> <p>7.3.2 Light Focusing Phenomenon 146</p> <p>7.3.3 Photoluminescence Properties 151</p> <p>7.3.4 Probable Roles of the Frustule in Diatom Photobiology 152</p> <p>7.4 Diatom Photobiology 153</p> <p>7.4.1 Underwater Light Field 153</p> <p>7.4.2 Cell Cycle Light Regulation 154</p> <p>7.4.3 The Phototactic Phenomenon in Pennates 154</p> <p>7.4.4 Chloroplast Migration (Karyostrophy) 156</p> <p>7.4.5 Blue Light and Its Effects on Microtubules of Cells 157</p> <p>7.4.6 Strategies for Photoregulation Under High Light Intensity 159</p> <p>7.4.7 Strategies for Photoregulation Under Ultraviolet Radiation (UV) Exposure 159</p> <p>7.4.8 Diatoms and Low Light 160</p> <p>7.4.9 Diatoms and No Light 161</p> <p>7.4.10 Light Piping and Cellular Vision 161</p> <p>7.5 Diatom and Light Applications 162</p> <p>7.5.1 In Photocatalysis 162</p> <p>7.5.2 Bio-Based UV Filters 164</p> <p>7.5.3 In Solar Cells 165</p> <p>7.5.4 Applications Based on Luminescence Properties 167</p> <p>7.5.5 Cloaking Diatoms 167</p> <p>7.6 Conclusion 169</p> <p>Acknowledgement 169</p> <p>Glossary 169</p> <p>References 171</p> <p><b>8 Photosynthesis in Diatoms 191<br /> </b><i>Matteo Scarsini, Justine Marchand, Kalina M. Manoylov and Benoît Schoefs</i></p> <p>8.1 Introduction 191</p> <p>8.2 The Chloroplast Structure Reflects the Two Steps Endosymbiosis 194</p> <p>8.3 Photosynthetic Pigments 196</p> <p>8.3.1 Chlorophylls 196</p> <p>8.3.2 Carotenoids 197</p> <p>8.4 The Organization of the Photosynthetic Apparatus 197</p> <p>8.5 Non-Photochemical Quenching (NPQ) 200</p> <p>8.6 Carbon Uptake and Fixation 202</p> <p>8.7 Conclusions and Perspectives 204</p> <p>Acknowledgment 205</p> <p>References 205</p> <p><b>9 Iron in Diatoms 213<br /> </b><i>John A. Raven</i></p> <p>9.1 Introduction 213</p> <p>9.2 Fe Acquisition by Diatoms 214</p> <p>9.3 Fe-Containing Proteins in Diatoms and Economy of Fe Use 214</p> <p>9.4 Iron Storage 219</p> <p>9.5 Conclusions and Prospects 220</p> <p>Acknowledgements 220</p> <p>References 220</p> <p><b>10 Diatom Symbioses with Other Photoauthotroph 225<br /> </b><i>Rosalina Stancheva and Rex Lowe</i></p> <p>10.1 Introduction 225</p> <p>10.2 Diatoms with a N<sub>2</sub>-Fixing Coccoid Cyanobacterial Endosymbiont 226</p> <p>10.3 Diatoms with N<sub>2</sub>-Fixing Filamentous Heterocytous Cyanobacterial Endosymbionts 233</p> <p>10.4 Epiphytic, Endogloeic and Endophytic Diatoms 235</p> <p>10.5 Diatom Endosymbionts in Dinoflagellates 238</p> <p>Acknowledgements 239</p> <p>References 239</p> <p><b>11 Diatom Sexual Reproduction and Life Cycles 245<br /> </b><i>Aloisie Poulíčková and David G. Mann</i></p> <p>11.1 Introduction 245</p> <p>11.2 Centric Diatoms 247</p> <p>11.2.1 Life Cycle and Reproduction 247</p> <p>11.2.2 Gametogenesis and Gamete Structure 250</p> <p>11.2.3 Spawning 251</p> <p>11.3 Pennate Diatom Life Cycles and Reproduction 252</p> <p>11.4 Auxospore Development and Structure 257</p> <p>11.4.1 Incunabula 259</p> <p>11.4.2 Perizonium 260</p> <p>11.5 Induction of Sexual Reproduction 261</p> <p>Acknowledgments 262</p> <p>References 263</p> <p><b>12 Ecophysiology, Cell Biology and Ultrastructure of a Benthic Diatom Isolated in the Arctic 273<br /> </b><i>Ulf Karsten, Rhena Schumann and Andreas Holzinger</i></p> <p>12.1 Introduction 274</p> <p>12.2 Environmental Settings in the Arctic 274</p> <p>12.3 Growth as Function of Temperature 275</p> <p>12.4 Growth After Long-Term Dark Incubation 277</p> <p>12.5 Cell Biological Traits After Long-Term Dark Incubation 279</p> <p>12.6 Ultrastructural Traits 282</p> <p>12.7 Conclusions 283</p> <p>Acknowledgements 284</p> <p>References 284</p> <p><b>13 Ecology of Freshwater Diatoms – Current Trends and Applications 289<br /> </b><i>Aloisie Poulíčková and Kalina Manoylov</i></p> <p>13.1 Introduction 289</p> <p>13.2 Diatom Distribution 292</p> <p>13.3 Diatom Dispersal Ability 292</p> <p>13.4 Functional Classification in Diatom Ecology 294</p> <p>13.5 Spatial Ecology and Metacommunities 296</p> <p>13.6 Aquatic Ecosystems Biomonitoring 299</p> <p>13.7 Conclusions 301</p> <p>References 301</p> <p><b>14 Diatoms from Hot Springs of the Kamchatka Peninsula (Russia) 311<br /> </b><i>Tatiana V. Nikulina, E. G. Kalitina, N. A. Kharitonova, G. A. Chelnokov, Elena A. Vakh and O. V. Grishchenko</i></p> <p>14.1 Introduction 311</p> <p>14.2 Materials and Methods 313</p> <p>14.3 Description of Sampling Sites 313</p> <p>14.3.1 Malkinsky Geothermal Field 314</p> <p>14.3.2 Nachikinsky Geothermal Field 317</p> <p>14.3.3 Verkhnaya-Paratunka Geothermal Field 317</p> <p>14.3.3.1 Goryachaya Sopka Hot Spring 318</p> <p>14.3.3.2 Karimshinsky Hot Spring 318</p> <p>14.3.4 Mutnovsky Geothermal Field 318</p> <p>14.3.4.1 Dachny Hot Springs 319</p> <p>14.3.4.2 Verkhne-Vilyuchinsky Hot Spring 319</p> <p>14.4 Results 320</p> <p>14.4.1 Malkinsky Geothermal Field 320</p> <p>14.4.2 Nachikinsky Geothermal Field 320</p> <p>14.4.3 Verkhnaya-Paratunka Geothermal Field 326</p> <p>14.4.3.1 Goryachaya Sopka Hot Spring 326</p> <p>14.4.3.2 Karimshinsky Hot Spring 326</p> <p>14.4.4 Mutnovsky Geothermal Field 326</p> <p>14.4.4.1 Dachny Hot Springs 326</p> <p>14.4.4.2 Verkhne-Vilyuchinsky Hot Spring 327</p> <p>14.5 Summary 330</p> <p>References 331</p> <p><b>15 Biodiversity of High Mountain Lakes in Europe with Special Regards to Rila Mountains (Bulgaria) and Tatra Mountains (Poland) 335<br /> </b><i>Nadja Ognjanova-Rumenova, Agata Z. Wojtal, Elwira Sienkiewicz, Ivan Botev and Teodora Trichkova</i></p> <p>15.1 Introduction 335</p> <p>15.1.1 Factors Which Control the Diatom Distribution 336</p> <p>15.1.2 Biodiversity Assessment 337</p> <p>15.2 Recent Datom Biodiversity in High Mountain Lakes in bulgaria and Poland 338</p> <p>15.2.1 The Rila Lakes, Bulgaria 338</p> <p>15.2.2 The Tatra Lakes, Poland 339</p> <p>15.3 Diatom Community Changes in High-Mountain Lakes in Bulgaria and Poland from Pre-Industrial Times to Present Day 340</p> <p>15.3.1 The Rila Mts. 340</p> <p>15.3.2 Tatra Mts. 342</p> <p>15.4 Monitoring Data ‘2015’ and Correlations Between the Data Sets of the Rila Mts. and the Tatra Mts. 344</p> <p>15.4.1 The Rila Lakes 344</p> <p>15.4.2 The Tatra Lakes 346</p> <p>15.5 Red-List Data: <i>Cirque “Sedemte Ezera”, Rila Mts. and Tatra Mts. </i>349</p> <p>15.5.1 Cirque “Sedemte Ezera”, Rila Mts. 349</p> <p>15.5.2 Tatra Mts. 349</p> <p>15.6 Summary 349</p> <p>Acknowledgements 351</p> <p>References 351</p> <p><b>16 Diatoms of the Southern Part of the Russian Far East 355<br /> </b><i>Tatiana V. Nikulina and Lubov A. Medvedeva</i></p> <p>16.1 History of the Study of Freshwater Algae of the Southern Part of the Russian Far East 355</p> <p>16.1.1 The Primorye Territory 357</p> <p>16.1.1.1 Lakes and Reservoirs 357</p> <p>16.1.1.2 Rivers and Streams 358</p> <p>16.1.2 The Amur Region 360</p> <p>16.1.2.1 The Upper Amur 360</p> <p>16.1.2.2 The Middle Amur 360</p> <p>16.1.3 The Jewish Autonomous Region 361</p> <p>16.1.4 The Khabarovsk Territory 361</p> <p>16.1.4.1 The Middle Amur 361</p> <p>16.1.4.2 The Lower Amur 361</p> <p>16.1.5 The Sakhalin Region 362</p> <p>16.1.5.1 Sakhalin Island 362</p> <p>16.1.5.2 Moneron Island 363</p> <p>16.1.5.3 The Kuril Islands 363</p> <p>16.2 Diatom Flora of the Southern Part of the Russian Far East 363</p> <p>References 377</p> <p><b>17 Toxic and Harmful Marine Diatoms 389<br /> </b><i>Stephen S. Bates, Nina Lundholm, Katherine A. Hubbard, Marina Montresor and Chui Pin Leaw</i></p> <p>17.1 Introduction 390</p> <p>17.2 Harmful Diatoms 391</p> <p>17.2.1 How Diatoms May Cause Harm 391</p> <p>17.2.2 Diatom Oxylipins 391</p> <p>17.2.2.1 Polyunsaturated Aldehydes (PUAs) 391</p> <p>17.2.2.2 Oxylipin Production by Pseudo-nitzschia 396</p> <p>17.3 Toxic Diatoms 397</p> <p>17.3.1 Diatoms That Produce Β-N-Methylamino-L-Alanine (BMAA) 397</p> <p>17.3.2 <i>Nitzschia navis-varingica </i>400</p> <p>17.3.3 <i>Nitzschia bizertensis </i>400</p> <p>17.3.4 <i>Pseudo-nitzschia </i>spp 401</p> <p>17.3.4.1 New Species 401</p> <p>17.3.4.2 Distribution 401</p> <p>17.3.4.3 Sexual Reproduction 401</p> <p>17.3.4.4 Genomic Insights Into Pseudo-nitzschia and Its Population Genetic Structure 410</p> <p>17.3.4.5 New Knowledge of <i>Pseudo-nitzschia </i>411</p> <p>17.3.5 Identification of Toxic Diatoms 414</p> <p>17.3.5.1 Classical Methods 414</p> <p>17.3.5.2 Molecular Approaches 415</p> <p>17.4 Gaps in Knowledge and Thoughts for Future Directions 417</p> <p>References 418</p> <p><b>18 Diatoms in Forensics: A Molecular Approach to Diatom Testing in Forensic Science 435<br /> </b><i>Vandana Vinayak and S. Gautam</i></p> <p>18.1 Introduction 435</p> <p>18.2 Postmortem Forensic Counter Measures 438</p> <p>18.3 Differences in Drowned Victims vs Those that Die of Other Causes 439</p> <p>18.4 Techniques to Identify Diatoms in Biological Sample 440</p> <p>18.4.1 Morphological Analysis of Water Samples 441</p> <p>18.4.2 Role of Site Specific Diatoms 442</p> <p>18.5 Case Studies 443</p> <p>18.5.1 Case 1 443</p> <p>18.5.2 Case 2 443</p> <p>18.5.3 Case 3 444</p> <p>18.6 Identification of Diatom Using Molecular Tools in Tissue and Water Samples 446</p> <p>18.7 Differentiation of Diatom DNA in the Tissue of a Drowned Victim 447</p> <p>18.8 Polymerase Chain Reaction (PCR) 448</p> <p>18.9 Diatom DNA Extraction from Biological Samples of a Drowned Victim 448</p> <p>18.9.1 Biological Samples 448</p> <p>18.9.2 Plankton/Diatom Isolation from Tissues Using Colloidal Silica Gradient and Phenol Chloroform Method for DNA Extraction 454</p> <p>18.10 Best Barcode Markers for Diatoms to Diagnose Drowning 454</p> <p>18.10.1 Cytochrome C Oxidase Subunit 1 (<i>COI</i>) 455</p> <p>18.10.2 Nuclear rDNA ITS Region 456</p> <p>18.10.3 Nuclear Small Subunit rRNA Gene 457</p> <p>18.11 DNA Sequencing 457</p> <p>18.12 Advancement in Sequencing Leads to Advancement of Data Interpretation 458</p> <p>18.13 Conclusion and Future Perspectives 459</p> <p>Acknowledgements 459</p> <p>List of Abbreviations Used 460</p> <p>References 460</p> <p><b>19 Diatomite in Use: Nature, Modifications, Commercial Applications and Prospective Trends 471<br /> </b><i>Mohamed M. Ghobara and Asmaa Mohamed</i></p> <p>19.1 The Nature of Diatomite 471</p> <p>19.1.1 Diatomite Formation 472</p> <p>19.1.2 Diatom Frustule’s Resistance Against Dissolution (The Reason for Their Preservation Over Millions of Years) 473</p> <p>19.2 The History of Discovery and Ancient Applications 475</p> <p>19.3 Diatomite Occurrence and Distribution 476</p> <p>19.4 Diatomite Mining and Processing 477</p> <p>19.5 Diatomite Characterization 479</p> <p>19.6 Diatom Frustules Modifications 480</p> <p>19.7 Diatomite in Use 481</p> <p>19.7.1 Diatomite-Based Filtration 482</p> <p>19.7.1.1 Water Filtration 483</p> <p>19.7.1.2 Beer Filtration 484</p> <p>19.7.1.3 Recent Trends in Diatomite-Based Separation Techniques 485</p> <p>19.7.1.4 Reuse of Spent DE Filter Media 485</p> <p>19.7.2 Diatomite for Thermal Insulation 485</p> <p>19.7.3 Diatomite-Based Building Materials 487</p> <p>19.7.4 Diatomaceous Earth as an Insecticide 488</p> <p>19.7.5 Diatomaceous Earth as a soil amendment 488</p> <p>19.7.6 Diatomaceous Earth as a Filler 489</p> <p>19.7.7 Diatomaceous Earth as Abrasive Material 490</p> <p>19.7.8 Diatomaceous Earth as Animals’ and Human’s Food Additives 490</p> <p>19.7.9 Diatomaceous Earth and Nanotechnology 491</p> <p>19.7.9.1 Diatomaceous Earth in Solar Energy Harvesting Systems 491</p> <p>19.7.9.2 Diatomaceous Earth-Based Superhydrophobic Surfaces 491</p> <p>19.7.9.3 Diatomaceous Earth Composites as Catalysts 492</p> <p>19.7.9.4 Diatomaceous Earth-Based Supercapacitors 492</p> <p>19.7.9.5 Diatomaceous Earth-Based Pharmaceutical and Biomedical Applications 492</p> <p>19.7.9.6 Diatomaceous Earth-Based Lab-on-a-Chip 494</p> <p>19.7.10 Non-Industrial Applications 494</p> <p>19.8 Diatomite Fabrication and Future Aspects 495</p> <p>19.9 Conclusion 495</p> <p>Acknowledgements 496</p> <p>References 496</p> <p><b>20 Diatom Silica for Biomedical Applications 511<br /> </b><i>Shaheer Maher, Moom Sin Aw and Dusan Losic</i></p> <p>20.1 Introduction 511</p> <p>20.2 Diatoms: Natural Silica Microcapsules for Therapeutics Delivery 513</p> <p>20.2.1 Structure 513</p> <p>20.2.2 Surface Modification of Diatoms 514</p> <p>20.2.3 Diatoms Applications as Drug Carriers 516</p> <p>20.2.4 Diatoms as a Source of Biodegradable Carriers for Drug Delivery Applications 522</p> <p>20.2.4.1 Diatoms as a Source of Biodegradable Silicon Micro and Nano Carriers for Drug Delivery 525</p> <p>20.2.5 Diatom Silica for Other Biomedical Applications 527</p> <p>20.2.5.1 Tissue Engineering 527</p> <p>20.2.5.2 Haemorrhage Control 528</p> <p>20.3 Conclusions 530</p> <p>Acknowledgements 531</p> <p>References 531</p> <p><b>21 Diafuel</b>™<b>(Diatom Biofuel) vs Electric Vehicles, a Basic Comparison: A High Potential Renewable Energy Source to Make India Energy Independent 537<br /> </b><i>Vandana Vinayak, Khashti Ballabh Joshi and Priyangshu Manab Sarma</i></p> <p>21.1 Introduction 538</p> <p>21.2 Debate on Relation of Green House Gas Emissions (GHG) with CO<sub>2 </sub>and Temperature 539</p> <p>21.3 Outcomes of Paris Agreement 2015 541</p> <p>21.4 Energy Demands for India 542</p> <p>21.5 Critics Talking About Entry of EV in Market 545</p> <p>21.6 Comparison Between Electric Vehicles vs Vehicles with Diafuel™ at Large 546</p> <p>21.6.1 Electric Vehicles 546</p> <p>21.6.1.1 Status of EV in India 548</p> <p>21.6.1.2 Predicted Impact of EV on Global and Indian Network Versus Their Energy Sources 549</p> <p>21.6.2 Diafuel™ 550</p> <p>21.6.2.1 Diafuel™ Industrial Production 552</p> <p>21.6.2.2 Designing an Energy Self-Sufficient Indian House Producing Diafuel™ 554</p> <p>21.6.2.3 Working Prototype of Diatom Panels for the Indian House 555</p> <p>21.6.2.4 Advantages of Diafuel™ 556</p> <p>21.7 Source for Generation of Electricity to Drive EVs 557</p> <p>21.7.1 Resources with Zero Carbon Emission 558</p> <p>21.7.1.1 Nuclear Power 559</p> <p>21.7.1.2 Solar Energy for Faster Adoption and Manufacturing of Electric & Hybrid Vehicles in India 559</p> <p>21.7.1.3 Wind Power 560</p> <p>21.7.1.4 Barriers for Wind and Solar Energy 561</p> <p>21.8 CO<sub>2</sub> Emissions by Electric Vehicle vs Gasoline Driven Vehicles 562</p> <p>21.9 Depletion of Earth Metals to Run EV’s vs Abundant Resources for Diafuel™ 564</p> <p>21.9.1 Can Diafuel™ be the Answer 566</p> <p>21.9.2 Harvesting Diafuel™ from Diatoms 566</p> <p>21.10 Current Status 567</p> <p>21.10.1 Data Analysis and Comparison Between EV and Diafuel™ 569</p> <p>21.11 Conclusions 569</p> <p>Acknowledgement 574</p> <p>List of Abbreviations Used 574</p> <p>References 574</p> <p><b>22 Bubble Farming: Scalable Microcosms for Diatom Biofuel and the Next Green Revolution 583<br /> </b><i>Richard Gordon, Clifford R Merz, Shawn Gurke and Benoît Schoefs</i></p> <p>22.1 Introduction 584</p> <p>22.1.1 The Bubble Farming Concept 588</p> <p>22.1.2 Bubble Injection, Sampling, Harvesting and Sealing, Maybe by Drones 592</p> <p>22.1.3 Approach 594</p> <p>22.2 Mechanical Properties 594</p> <p>22.2.1 Optimal Bubble Size 596</p> <p>22.3 Optical Properties 597</p> <p>22.4 Surface Properties 599</p> <p>22.4.1 Gas Exchange Properties 599</p> <p>22.5 Toxicity Restrictions 609</p> <p>22.5.1 Algal Oil Droplet Properties 611</p> <p>22.6 Biofilms 611</p> <p>22.7 Bacterial Symbionts 612</p> <p>22.7.1 Soil as a Source of CO<sub>2 </sub>613</p> <p>22.8 Demand 614</p> <p>22.8.1 The Choice of Diatoms vs Other Algae 614</p> <p>22.9 Exponential Growth vs Stationary Phase 617</p> <p>22.10 Carbon Recycling 619</p> <p>22.11 Packaging 619</p> <p>22.11.1 Crop Choice by Farmers 620</p> <p>22.11.2 Bubble Farming vs Photobioreactors and Raceways 620</p> <p>22.12 Summary 620</p> <p>Acknowledgements 626</p> <p>References 626</p> <p>Index 655</p>
<p><b>Professor J. Seckbach</b> is a retired senior academician at The Hebrew University of Jerusalem, Israel. He earned his MSc. & PhD from the University of Chicago. He was appointed to the Hebrew University, Jerusalem (as a senior Lecturer) and spent sabbaticals at UCLA and Harvard University. He served at Louisiana State University (LSU), Baton Rouge, LA, USA, as the first selected Chair for the Louisiana Sea Grant and Technology transfer. He has edited over 35 scientific books and ~ 140 scientific articles on plant ferritin–phytoferritin, cellular evolution, acidothermophilic algae, and life in extreme environments and on astrobiology. <p><b>Richard Gordon's</b> involvement with diatoms goes back to 1970 with his capillarity model for their gliding motility, published in the <i>Proceedings of the National Academy of Sciences of the United States of America</i>. He later worked on a diffusion limited aggregation model for diatom morphogenesis, which led to the first paper ever published on diatom nanotechnology in 1988. He organized the first workshop on diatom nanotech in 2003. His other research is on computed tomography algorithms, HIV/AIDS prevention, and embryogenesis.
<p><b>Diatoms are beginning to have a wide impact on our technology and this volume details biofuels from diatoms, the industrial applications of fossil diatoms (diatomite or diatomaceous earth), and a new form of agriculture, bubble farming, aimed initially around diatom high value products and biofuel.</b> <p>Diatoms are single cells, an algal group in which each cell is surrounded by a silica glass shell. They appear in beautiful attractive shapes and have several uses, ranging from building materials to nanotechnology. Twenty percent of the oxygen we breathe is produced by diatom photosynthesis and they feed most of the aquatic food chain in fresh water and the oceans. They serve as sources of biofuel and improve solar energy production of electricity. Some of them are among the extremophiles (living in environments of hot or cold temperatures, at extreme pH ranges, at high or low light levels, and surviving desiccation). There are about 100,000 diatom species and a similar number of papers have been published since their discovery over three hundred years ago. The literature on diatoms is currently doubling every ten years, with over 50,000 papers during the last decade <p>The aim of this new book series (Diatoms: Biology and Applications) is to provide a comprehensive and reliable source of information on diatom biology and applications. The first book of the series, <i>Diatoms Fundamentals & Applications</i>, is wide ranging, starting with the contributions of amateurs and the beauty of diatoms, to details of how their shells are made, how they bend light to their advantage and ours, and major aspects of their biochemistry (photosynthesis and iron metabolism). The book then delves into the ecology of diatoms living in a wide range of habitats, and looks at those few that can kill or harm us. The book concludes with a wide range of applications of diatoms, in forensics, manufacturing, medicine, biofuel and agriculture. The contributors are leading international experts on diatoms. This book is written to both act as an introduction to diatoms and to present some of the most advanced research on them. <p><b>Audience</b> <p>Researchers and graduate students in the fields of phycology, biology, marine sciences and ecology.

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
161,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
242,99 €