Details

Green Stormwater Infrastructure Fundamentals and Design


Green Stormwater Infrastructure Fundamentals and Design


1. Aufl.

von: Allen P. Davis, William F. Hunt, Robert G. Traver

123,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 07.06.2022
ISBN/EAN: 9781119338024
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Green Stormwater Infrastructure Fundamentals and Design</b> <p><b>Discover novel stormwater control measures to make for a greener tomorrow!</b> <p>The protection of our aquatic resources is growing in importance as the effects of climate change and continued urbanization are felt throughout the world. While most rain that falls onto vegetated spaces infiltrates the soil, rain that falls onto impervious surfaces will not, increasing downstream flooding and erosion and causing impaired water quality. Impervious surfaces such as road infrastructure, rooftops, and parking areas all increase runoff and mobilize many pollutants that have deposited on these surfaces that are then carried into our waterways. Proper management of this stormwater through green infrastructure is essential to address these challenges and reduce the environmental and ecological impacts brought about by this runoff. <p>This book brings into focus resilient stormwater control measures (SCMs) for the reduction of stormwater flows and associated pollutants that can detrimentally impact our local environmental and ecological systems. These interventions are green infrastructure based, utilizing natural hydrologic and environmental features using soil and vegetation to manage stormwater. These technologies include water harvesting, bioretention and bioinfiltration, vegetated swales and filter strips, permeable pavements, sand filters, green roofs, and stormwater wetlands, among others. The basic science and engineering of these technologies is discussed, including performance information and best maintenance practices. <p><i>Green Stormwater Infrastructure </i>readers will also find: <ul><li>Research-informed resilient SCM design fundamentals</li> <li>Diagrams developed by the authors to enhance understanding</li> <li>Case studies to illustrate the points elucidated in the book</li> <li>End-of-chapter problems with a separate solutions manual</li></ul> <p><i>Green Stormwater Infrastructure </i>is an ideal resource for environmental, civil, and biological engineers and environmental scientists in the consulting field. Landscape architects, managers and engineers of watershed districts, and members of federal, state, and local governmental agencies—especially those in the departments of environmental protection and transportation—will find many uses for this guidebook. It will also be of interest to professors, upper-level undergraduates and graduate students in environmental, civil, and biological engineering programs.
<p>Preface xix</p> <p>About the Authors xxi</p> <p>Acknowledgements xxiii</p> <p>About the Companion Website xxv</p> <p><b>1 Introduction to Urban Stormwater and Green Stormwater Infrastructure 1</b></p> <p>1.1 Population and Urban Infrastructure 1</p> <p>1.2 Impacts of Urbanization 2</p> <p>1.3 The US Regulatory Environment 7</p> <p>1.4 Urban Stormwater Management 12</p> <p>1.4.1 Flood Control 12</p> <p>1.4.2 Peak Flow Control 13</p> <p>1.4.3 Watershed Approach to Peak Flow 14</p> <p>1.4.4 Water-Quality Control 14</p> <p>1.5 Climate Change and Stationarity 15</p> <p>1.6 Green Stormwater Infrastructure 15</p> <p>1.7 Stormwater Control Measures 17</p> <p>1.8 Stormwater Infrastructure and Equity 17</p> <p>References 18</p> <p>Problems 19</p> <p><b>2 Precipitation: The Stormwater Driver 21</b></p> <p>2.1 Introduction 21</p> <p>2.2 The Urban Hydrologic Cycle 21</p> <p>2.3 Precipitation 23</p> <p>2.4 Precipitation Depths 24</p> <p>2.5 Rainfall Patterns 26</p> <p>2.6 Inter-event Interval 27</p> <p>2.7 Extreme Event Precipitation 27</p> <p>2.8 Introducing the Rainfall–Runoff Relationship 29</p> <p>2.9 Precipitation and Water Quality 30</p> <p>2.10 Climate Change 31</p> <p>References 31</p> <p>Problems 31</p> <p><b>3 Water Quality 33</b></p> <p>3.1 Introduction 33</p> <p>3.2 Designated Water Uses 33</p> <p>3.3 Water-Quality Parameters and Measures 34</p> <p>3.4 Temperature 34</p> <p>3.5 pH 35</p> <p>3.6 Dissolved Oxygen 35</p> <p>3.7 Turbidity and Particulate Matter 37</p> <p>3.8 Biodegradable Organic Matter or “Oxygen Demand” 40</p> <p>3.9 Nitrogen 41</p> <p>3.9.1 Nitrate 41</p> <p>3.9.2 Nitrite 42</p> <p>3.9.3 Ammonium 42</p> <p>3.9.4 Organic Nitrogen 43</p> <p>3.9.5 Nitrogen Measurements 43</p> <p>3.10 Phosphorus 44</p> <p>3.11 Heavy Metals 46</p> <p>3.12 Hydrocarbons and Other Organic Pollutants 46</p> <p>3.12.1 Hydrocarbons 46</p> <p>3.12.2 Pesticides and Other Organic Chemicals 47</p> <p>3.13 Pathogens 48</p> <p>3.14 Dissolved Solids and Conductivity 49</p> <p>3.15 Trash 50</p> <p>References 50</p> <p>Problems 50</p> <p><b>4 Ecosystem Services 53</b></p> <p>4.1 What Are Ecosystem Services? 53</p> <p>4.2 Ecosystem Services and Stormwater Management 56</p> <p>4.3 Stormwater Wetlands and Ecosystem Services 56</p> <p>4.4 Regulation Services 56</p> <p>4.4.1 Water Treatment 56</p> <p>4.4.2 Hydrologic Regulation 56</p> <p>4.4.3 Climate Regulation 57</p> <p>4.4.4 Air Quality Regulation 57</p> <p>4.5 Habitat Services 58</p> <p>4.6 Production Services 59</p> <p>4.7 Information Services 60</p> <p>4.8 Designing SCMs for Ecosystem Services 61</p> <p>References 61</p> <p>Problems 63</p> <p><b>5 Stormwater Quality 65</b></p> <p>5.1 Introduction 65</p> <p>5.2 Event Mean Concentrations 66</p> <p>5.3 Urban Runoff Pollutant Concentrations 68</p> <p>5.3.1 Particulate Matter and Particle Size Distributions 70</p> <p>5.3.2 Nitrogen and Nitrogen Speciation 71</p> <p>5.3.3 Phosphorus and Phosphorus Speciation 72</p> <p>5.3.4 Heavy Metals Concentrations and Speciation 73</p> <p>5.3.5 PAH and PCBs 74</p> <p>5.4 Urban Stormwater Pollutant Sources 74</p> <p>5.5 Pollutant Buildup and Wash Off 76</p> <p>5.5.1 Pollutographs 76</p> <p>5.5.2 First Flush 76</p> <p>5.6 Annual Pollutant Loads 83</p> <p>5.7 Sampling and Measurements 84</p> <p>5.8 A Note about Stormwater Quality 84</p> <p>References 84</p> <p>Problems 87</p> <p><b>6 Watershed Hydrology 89</b></p> <p>6.1 Introduction 89</p> <p>6.2 Precipitation 90</p> <p>6.2.1 Design Storms 91</p> <p>6.2.2 Continuous Simulation 97</p> <p>6.3 Watershed Hydrology 98</p> <p>6.3.1 Drainage Area Delineation 98</p> <p>6.3.2 Interception and Depression Storage 99</p> <p>6.3.3 The Simple Method 100</p> <p>6.3.4 NRCS Curve Number Method 101</p> <p>6.3.5 NRCS “Time of Concentration” 106</p> <p>6.3.6 NRCS Unit Hydrograph 108</p> <p>6.3.7 Creating the Storm Hydrograph 112</p> <p>6.4 Peak Flow Methods 113</p> <p>6.4.1 The Rational Method 113</p> <p>6.4.2 The NRCS Unit Hydrograph Method 115</p> <p>6.5 Watershed and SCM Hydraulics 115</p> <p>6.5.1 Open Channel Flow 115</p> <p>6.5.2 Orifices 117</p> <p>6.5.3 Weirs 118</p> <p>References 120</p> <p>Problems 121</p> <p><b>7 SCM Hydrologic Unit Processes 127</b></p> <p>7.1 Introduction 127</p> <p>7.2 SCM Soil Physics and Infiltration 128</p> <p>7.2.1 Soil Texture 129</p> <p>7.2.2 Soil–Water Interactions 130</p> <p>7.2.3 Soil Hydraulic Properties 134</p> <p>7.2.4 Green and Ampt Model 137</p> <p>7.2.5 Karst Areas 140</p> <p>7.3 Evapotranspiration 141</p> <p>7.4 Soil Moisture Accounting 147</p> <p>7.5 Storage Indication Routing 148</p> <p>7.6 Computer-Based Stormwater Models 148</p> <p>References 149</p> <p>Problems 150</p> <p><b>8 Unit Processes for Stormwater Quality Mitigation 153</b></p> <p>8.1 Introduction 153</p> <p>8.2 Reactions, Reactors, and Reactor Engineering 154</p> <p>8.3 Removal of Particulate Matter 158</p> <p>8.3.1 Sedimentation 158</p> <p>8.3.2 Filtration 161</p> <p>8.4 Removal of Dissolved Pollutants: Adsorption 163</p> <p>8.4.1 Adsorption Equilibrium Models 164</p> <p>8.4.2 Batch Adsorption 165</p> <p>8.4.3 Adsorption Column Dynamics 168</p> <p>8.4.4 Adsorption of Hydrophobic Organic Compounds 169</p> <p>8.4.5 Adsorption of Heavy Metals 170</p> <p>8.4.6 Adsorption of Phosphorus 170</p> <p>8.4.7 Adsorption of Ammonium 171</p> <p>8.5 Leaching Processes 171</p> <p>8.6 Microbiological Processes 171</p> <p>8.6.1 Microbial/Pathogen Survival 172</p> <p>8.6.2 Organic Matter Degradation 172</p> <p>8.6.3 Nitrification 173</p> <p>8.6.4 Denitrification 174</p> <p>8.7 Phytobiological Processes 175</p> <p>8.8 Heat Transfer 176</p> <p>References 177</p> <p>Problems 178</p> <p><b>9 Stormwater Performance Measures and Metrics 183</b></p> <p>9.1 Introduction 183</p> <p>9.2 Reference Conditions and Defining Thresholds 184</p> <p>9.3 Volume Control 184</p> <p>9.3.1 Runoff Depth 184</p> <p>9.3.2 Curve Number Reduction 185</p> <p>9.4 Peak Flow, Flow, and Geomorphology 186</p> <p>9.5 Pollutant Percent Removal 189</p> <p>9.6 Chesapeake Bay Retrofit Curves 190</p> <p>9.7 Target Effluent Concentrations 190</p> <p>9.8 Annual Mass Load 192</p> <p>9.9 Probability and Exceedance 193</p> <p>9.10 Pollutant Durations 195</p> <p>References 198</p> <p>Problems 199</p> <p><b>10 Preventing Runoff and Stormwater Pollution 201</b></p> <p>10.1 Introduction 201</p> <p>10.2 Site Design and Low Impact Development 201</p> <p>10.3 Compacted Urban Surfaces 203</p> <p>10.3.1 Avoiding Compaction and Promoting Infiltration 204</p> <p>10.3.2 Soil Restoration 204</p> <p>10.3.3 De-paving 205</p> <p>10.3.4 Removing Abandoned Housing 205</p> <p>10.4 Street Trees 206</p> <p>10.5 Disconnecting Impervious Surfaces 207</p> <p>10.5.1 Defining Disconnected Impervious Surface 208</p> <p>10.5.2 Calculating the Benefit of Disconnecting Imperviousness 208</p> <p>10.5.3 Design 210</p> <p>10.5.4 Water-Quality Benefits 212</p> <p>10.5.5 Performance Results 212</p> <p>10.6 Pollution Prevention 213</p> <p>10.6.1 Street Sweeping 213</p> <p>10.6.2 Product Prohibition 216</p> <p>10.7 Education 217</p> <p>References 217</p> <p>Problems 218</p> <p><b>11 Green Infrastructure Stormwater Control 221</b></p> <p>11.1 Introduction 221</p> <p>11.2 Fundamentals of Stormwater Control Measures 221</p> <p>11.3 Designing to Climate and the Watershed 222</p> <p>11.4 Types of Stormwater Control Measures 223</p> <p>11.5 Nonvegetated Stormwater Control Measures 224</p> <p>11.5.1 Infiltration Basins and Rock Beds 224</p> <p>11.5.2 Permeable Pavements 224</p> <p>11.5.3 Cisterns and Rain Barrels 225</p> <p>11.5.4 Sand Filters 225</p> <p>11.6 Vegetated Stormwater Control Measures 225</p> <p>11.6.1 Vegetation Challenges 227</p> <p>11.6.2 Green Roofs 229</p> <p>11.6.3 Bioretention 230</p> <p>11.6.4 Vegetated Swales and Filter Strips 230</p> <p>11.6.5 Stormwater Wetlands 230</p> <p>11.7 Selecting the SCM Site 230</p> <p>11.8 Stormwater Treatment Media 231</p> <p>11.8.1 Rock, Gravel, and Coarse Sand 232</p> <p>11.8.2 Silts and Clays 232</p> <p>11.8.3 Organic Media 232</p> <p>11.9 Volumetric Storage 233</p> <p>11.10 Drains and Underdrains 234</p> <p>11.11 “Irreducible Concentrations” 235</p> <p>References 237</p> <p>Problems 238</p> <p><b>12 Inlets, Bypasses, Pretreatment, and Proprietary Devices 239</b></p> <p>12.1 Introduction 239</p> <p>12.2 Inlets 239</p> <p>12.3 Stormwater Bypass 240</p> <p>12.4 Catch Basin and Inlet Filters 241</p> <p>12.5 Pretreatment 242</p> <p>12.6 Forebays 242</p> <p>12.6.1 Forebay Design 243</p> <p>12.6.2 Forebay Maintenance 245</p> <p>12.7 Proprietary Devices 246</p> <p>12.8 Accumulated Trash and Sediment 248</p> <p>References 249</p> <p>Problems 249</p> <p><b>13 Green Roofs 251</b></p> <p>13.1 Introduction 251</p> <p>13.2 Climate and Green Roofs 251</p> <p>13.3 Types of Roofs 252</p> <p>13.3.1 Green Roofs 252</p> <p>13.3.2 Blue Roofs 253</p> <p>13.4 Extensive Green Roof Components 256</p> <p>13.5 Hydrologic Design Strategies 259</p> <p>13.5.1 Rainfall Capture 259</p> <p>13.5.2 Evapotranspiration 262</p> <p>13.6 Water Quality Design 264</p> <p>13.6.1 Phosphorus 265</p> <p>13.6.2 Nitrogen 266</p> <p>13.6.3 Metals 266</p> <p>13.7 Inspection and Maintenance 266</p> <p>13.8 Other Green Roof Benefits 266</p> <p>References 267</p> <p>Problems 268</p> <p><b>14 Rainwater Harvesting 271</b></p> <p>14.1 Introduction 271</p> <p>14.2 Potential as a Water Resource 272</p> <p>14.3 Harvested Roof Water Quality 273</p> <p>14.4 Rain Barrels 274</p> <p>14.5 Rainwater Harvesting Regulations 275</p> <p>14.5.1 Non-stormwater Regulations 276</p> <p>14.5.2 Stormwater Regulations 276</p> <p>14.6 Designing Rainwater Harvesting Systems 277</p> <p>14.6.1 General Characteristics and Purpose 277</p> <p>13.6.2 Rainwater Storage Sizing Techniques 278</p> <p>14.6.3 Design 279</p> <p>14.7 Designing for Enhanced Stormwater Performance 282</p> <p>14.7.1 Passive Release Mechanism 282</p> <p>14.7.2 Active Release Mechanism 284</p> <p>14.7.3 Alternative Approaches for Irrigation-based Systems 285</p> <p>14.7.4 Designing an Infiltration or Filtration Area 286</p> <p>14.8 Treatment for High-quality Use 288</p> <p>14.9 Inspection and Maintenance 289</p> <p>References 289</p> <p>Problems 290</p> <p><b>15 Permeable Pavement 293</b></p> <p>15.1 Introduction 293</p> <p>15.2 Types of Permeable Pavements 295</p> <p>15.3 Permeable Pavement Installation 298</p> <p>15.4 Designing for Infiltration and Percolation 298</p> <p>15.4.1 Surface Infiltration 299</p> <p>15.4.2 Run-on Ratio 299</p> <p>15.4.3 Depth/Volume of Storage Layer 301</p> <p>15.4.4 Underdrain Need 301</p> <p>15.4.5 Underdrain Configuration 301</p> <p>15.4.6 In Situ Soils 302</p> <p>15.5 Permeable Pavement Hydrologic Design Strategies 302</p> <p>15.6 Permeable Pavement Hydrology 305</p> <p>15.6.1 Hydrographs 305</p> <p>15.6.2 Curve Numbers and Storage 306</p> <p>15.6.3 Evaporation 307</p> <p>15.7 Water Quality Design 307</p> <p>15.7.1 Particulate Matter 308</p> <p>15.7.2 Metals 308</p> <p>15.7.3 Nutrients 308</p> <p>15.7.4 Hydrocarbons 309</p> <p>15.7.5 pH 309</p> <p>15.7.6 Thermal Pollution (Temperature) 310</p> <p>15.7.7 Pollutant Loads 310</p> <p>15.7.8 Long-term Pollutant Fate 311</p> <p>15.8 Maintenance 312</p> <p>15.9 Design Summary 312</p> <p>15.10 Permeable Pavement Cost Factors 312</p> <p>15.11 Permeable Friction Course 314</p> <p>References 315</p> <p>Problems 317</p> <p><b>16 Infiltration Trenches and Infiltration Basins 319</b></p> <p>16.1 Introduction 319</p> <p>16.2 Types of Basins 319</p> <p>16.3 Mechanisms of Treatment 321</p> <p>16.4 Infiltration 323</p> <p>16.5 Surface Infiltration Basins 323</p> <p>16.6 Infiltration Trench and Subsurface Infiltration Basin Design 326</p> <p>16.7 Infiltration Trench and Basin Performance 327</p> <p>16.8 Inspection and Maintenance 328</p> <p>References 329</p> <p>Problems 329</p> <p><b>17 Sand Filters 331</b></p> <p>17.1 Introduction 331</p> <p>17.2 Basic Sand Filter Operation 331</p> <p>17.3 Sand Filter Options and Configurations 331</p> <p>17.4 Sand Filter Design 333</p> <p>17.5 Water Quality Performance 335</p> <p>17.5.1 Particulate Matter Removal 335</p> <p>17.5.2 Dissolved Pollutant Removal 336</p> <p>17.6 Sand Filter Headloss 336</p> <p>17.7 Solids Accumulation and Clogging 337</p> <p>17.8 Sorptive and Reactive Media 339</p> <p>17.9 Geotextile Filters 339</p> <p>17.10 Inspection and Maintenance 340</p> <p>References 340</p> <p>Problems 341</p> <p><b>18 Bioretention 343</b></p> <p>18.1 Introduction 343</p> <p>18.2 Bioretention Classifications 344</p> <p>18.3 Bioretention Components 345</p> <p>18.4 Siting and Configuration 346</p> <p>18.5 Bioretention Flow Entrances, Inlets, and Forebays 348</p> <p>18.6 Storage Bowl 350</p> <p>18.7 Bioretention Design: Static Storage and Hydrologic Performance 351</p> <p>18.8 Dynamic Storage 353</p> <p>18.9 The Media 354</p> <p>18.9.1 Rain Gardens 354</p> <p>18.9.2 Standard Media 354</p> <p>18.9.3 Surface Mulch Layer 354</p> <p>18.10 Evapotranspiration 355</p> <p>18.11 The Media and Particulate Matter Removal 356</p> <p>18.12 The Media and Heavy Metals Removal 358</p> <p>18.13 The Media and Organic Pollutants Removal 359</p> <p>18.14 The Media and Phosphorus Removal 360</p> <p>18.14.1 Phosphorus Removal in Bioretention 361</p> <p>18.14.2 Quantifying Phosphorus Removal 362</p> <p>18.14.3 Media Enhancements for Phosphorus Removal 363</p> <p>18.15 The Media and Nitrogen Removal 366</p> <p>18.15.1 Nitrogen Processing in Standard Bioretention Systems 366</p> <p>18.15.2 Enhanced Nitrogen Removal 368</p> <p>18.15.3 Biological Nitrogen Transformations 368</p> <p>18.16 The Media and Bacteria Removal 370</p> <p>18.17 Vegetation 370</p> <p>18.18 The Underdrain and Subsurface Storage 373</p> <p>18.19 Internal Water Storage and Nitrogen Removal 376</p> <p>18.20 Bioretention Pollutant Load Reductions 377</p> <p>18.21 Bioretention Exfiltration and Groundwater 380</p> <p>18.22 Inspection and Maintenance 380</p> <p>References 381</p> <p>Problems 386</p> <p><b>19 Swales, Filter Strips, and Level Spreaders 393</b></p> <p>19.1 Introduction 393</p> <p>19.2 Characteristics 393</p> <p>19.2.1 Swales 393</p> <p>19.2.2 Filter Strips and Level Spreaders 393</p> <p>19.3 Swale Design 394</p> <p>19.3.1 Configurations 396</p> <p>19.3.2 Hydraulic Design 396</p> <p>19.4 Filter Strip Design 399</p> <p>19.4.1 Configurations 399</p> <p>19.4.2 Flow Conveyance 399</p> <p>19.5 Filter Strips Conveying to Swales 400</p> <p>19.6 Water Quality Considerations 402</p> <p>19.6.1 Designing for Pollutant Capture: Length of Swale 402</p> <p>19.6.2 Designing for Particulate Matter Removal 402</p> <p>19.6.3 Designing for Particulate Matter Removal with Particle-size Distribution Available 405</p> <p>19.6.4 Designing for Metals Removal 406</p> <p>19.6.5 Filtration through Swales and Filter Strips 408</p> <p>19.6.6 Check Dams 409</p> <p>19.7 Swale Performance 410</p> <p>19.7.1 Hydrologic Considerations 410</p> <p>19.7.2 Water Quality Considerations 412</p> <p>19.8 Construction, Inspection, and Maintenance 414</p> <p>19.9 Summary 414</p> <p>References 415</p> <p>Problems 416</p> <p><b>20 Stormwater Wetlands 421</b></p> <p>20.1 Introduction 421</p> <p>20.2 Sizing Stormwater Wetlands 422</p> <p>20.3 Stormwater Wetland Features and Design 423</p> <p>20.3.1 Zone I—Deep Pools 424</p> <p>20.3.2 Zone II—Deep to Shallow Water Transition Zone (Transition Zone) 426</p> <p>20.3.3 Zone III—Shallow Water Zone 426</p> <p>20.3.4 Zone IV—Temporary Inundation Zone 427</p> <p>20.3.5 Zone V—Upper Bank 428</p> <p>20.4 Wetland Vegetation 428</p> <p>20.5 Wetland Soils and Vegetation Growth Media 430</p> <p>20.6 Wetland Outlet Configuration 431</p> <p>20.7 Wetland Construction 437</p> <p>20.8 Wetland Variations 437</p> <p>20.8.1 Wetland Design for Cold Water Species (Salmonids) 437</p> <p>20.8.2 Off-line Stormwater Wetlands 437</p> <p>20.8.3 Wetlands with High Flow Bypass 438</p> <p>20.9 Water Quality Improvements in Stormwater Wetlands 439</p> <p>20.10 Other Stormwater Wetland Designs 442</p> <p>20.10.1 Submerged Gravel Wetlands 442</p> <p>20.10.2 Ponds Transitioning to Wetlands 443</p> <p>20.10.3 Floating Wetlands 444</p> <p>20.11 Inspection and Maintenance 447</p> <p>References 447</p> <p>Problems 449</p> <p><b>21 Putting It All Together 451</b></p> <p>21.1 Introduction 451</p> <p>21.2 SCM Hydrologic Performance Summary 451</p> <p>21.3 SCM Water Quality Performance Summary 453</p> <p>21.3.1 Green Roofs and Water Harvesting 453</p> <p>21.3.2 Permeable Pavements 453</p> <p>21.3.3 Infiltration Basins 454</p> <p>21.3.4 Sand Filters 454</p> <p>21.3.5 Bioretention 454</p> <p>21.3.6 Vegetated Swales 455</p> <p>21.3.7 Stormwater Wetlands 455</p> <p>21.4 Treatment Trains 455</p> <p>21.5 SCM Treatment Train Examples 456</p> <p>21.5.1 Treatment Trains within Individual SCMs 456</p> <p>21.5.2 Incorporating Treatment Trains in Traditional SCMs 457</p> <p>21.5.3 SCMs in Series 457</p> <p>21.6 Quantifying Performance in SCM Treatment Trains 462</p> <p>21.7 Real Time Controls 463</p> <p>21.8 Designing for Climate Change 464</p> <p>21.9 Greener Infrastructure: What Does the Future Hold? 466</p> <p>References 467</p> <p>Problems 469</p> <p>Appendix A 471</p> <p>Index 473</p>
<p><b>Allen P. Davis, PhD, PE, D. WRE, F. EWRI, F. ASCE,</b> is the Charles A. Irish Sr. Chair in Civil Engineering and Professor in the Department of Civil and Environmental Engineering, and Affiliate Professor in Plant Science and Landscape Architure at the University of Maryland, College Park, MD.</p> <p><b>William F. Hunt III, PhD, PE, D. WRE, M. ASCE </b>is a William Neal Reynolds Distinguished University Professor and Extension Specialist in the Department of Biological and Agricultural Engineering at North Carolina State University, Raleigh, NC. He is the leader of the Stormwater Engineering Group at NC State. <p><b>Robert G. Traver, PhD, PE, D. WRE, F. EWRI, F. ASCE, </b>is a Professor in the Department of Civil and Environmental Engineering at Villanova University, Villanova, PA, and former Edward A. Daylor Chair in Civil Engineering. He is the Director of the Villanova Center for Resilient Water Systems, and the Villanova Urban Stormwater Partnership.
<p><b>Discover novel stormwater control measures to make for a greener tomorrow!</b></p> <p>The protection of our aquatic resources is growing in importance as the effects of climate change and continued urbanization are felt throughout the world. While most rain that falls onto vegetated spaces infiltrates the soil, rain that falls onto impervious surfaces will not, increasing downstream flooding and erosion and causing impaired water quality. Impervious surfaces such as road infrastructure, rooftops, and parking areas all increase runoff and mobilize many pollutants that have deposited on these surfaces that are then carried into our waterways. Proper management of this stormwater through green infrastructure is essential to address these challenges and reduce the environmental and ecological impacts brought about by this runoff. <p>This book brings into focus resilient stormwater control measures (SCMs) for the reduction of stormwater flows and associated pollutants that can detrimentally impact our local environmental and ecological systems. These interventions are green infrastructure based, utilizing natural hydrologic and environmental features using soil and vegetation to manage stormwater. These technologies include water harvesting, bioretention and bioinfiltration, vegetated swales and filter strips, permeable pavements, sand filters, green roofs, and stormwater wetlands, among others. The basic science and engineering of these technologies is discussed, including performance information and best maintenance practices. <p><i>Green Stormwater Infrastructure </i>readers will also find: <ul><li>Research-informed resilient SCM design fundamentals</li> <li>Diagrams developed by the authors to enhance understanding</li> <li>Case studies to illustrate the points elucidated in the book</li> <li>End-of-chapter problems with a separate solutions manual</li></ul> <p><i>Green Stormwater Infrastructure </i>is an ideal resource for environmental, civil, and biological engineers and environmental scientists in the consulting field. Landscape architects, managers and engineers of watershed districts, and members of federal, state, and local governmental agencies—especially those in the departments of environmental protection and transportation—will find many uses for this guidebook. It will also be of interest to professors, upper-level undergraduates and graduate students in environmental, civil, and biological engineering programs.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €