Details

Electrochemical Methods


Electrochemical Methods

Fundamentals and Applications
3. Aufl.

von: Allen J. Bard, Larry R. Faulkner, Henry S. White

111,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 26.04.2022
ISBN/EAN: 9781119334071
Sprache: englisch
Anzahl Seiten: 1104

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The latest edition of a classic textbook in electrochemistry</b></p> <p>The third edition of <i>Electrochemical Methods</i> has been extensively revised to reflect the evolution of electrochemistry over the past two decades, highlighting significant developments in the understanding of electrochemical phenomena and emerging experimental tools, while extending the book's value as a general introduction to electrochemical methods.</p> <p>This authoritative resource for new students and practitioners provides must-have information crucial to a successful career in research. The authors focus on methods that are extensively practiced and on phenomenological questions of current concern.</p> <p>This latest edition of <i>Electrochemical Methods</i> contains numerous problems and chemical examples, with illustrations that serve to illuminate the concepts contained within in a way that will assist both student and mid-career practitioner.</p> <p>Significant updates and new content in this third edition include:</p> <ul> <li>An extensively revised introductory chapter on electrode processes, designed for new readers coming into electrochemistry from diverse backgrounds</li> <li>New chapters on steady-state voltammetry at ultramicroelectrodes, inner-sphere electrode reactions and electrocatalysis, and single-particle electrochemistry</li> <li>Extensive treatment of Marcus kinetics as applied to electrode reactions, a more detailed introduction to migration, and expanded coverage of electrochemical impedance spectroscopy</li> <li>The inclusion of Lab Notes in many chapters to help newcomers with the transition from concept to practice in the laboratory</li> </ul> <p>The new edition has been revised to address a broader audience of scientists and engineers, designed to be accessible to readers with a basic foundation in university chemistry, physics and mathematics. It is a self-contained volume, developing all key ideas from the fundamental principles of chemistry and physics.</p> <p>Perfect for senior undergraduate and graduate students taking courses in electrochemistry, physical and analytical chemistry, this is also an indispensable resource for researchers and practitioners working in fields including electrochemistry and electrochemical engineering, energy storage and conversion, analytical chemistry and sensors.</p>
<p>Preface xxi</p> <p>Major Symbols and Abbreviations xxv</p> <p>About the Companion Website liii</p> <p><b>1 Overview of Electrode Processes 1</b></p> <p>1.1 Basic Ideas 2</p> <p>1.1.1 Electrochemical Cells and Reactions 2</p> <p>1.1.2 Interfacial Potential Differences and Cell Potential 4</p> <p>1.1.3 Reference Electrodes and Control of Potential at a Working Electrode 5</p> <p>1.1.4 Potential as an Expression of Electron Energy 6</p> <p>1.1.5 Current as an Expression of Reaction Rate 6</p> <p>1.1.6 Magnitudes in Electrochemical Systems 8</p> <p>1.1.7 Current–Potential Curves 9</p> <p>1.1.8 Control of Current vs. Control of Potential 16</p> <p>1.1.9 Faradaic and Nonfaradaic Processes 17</p> <p>1.2 Faradaic Processes and Factors Affecting Rates of Electrode Reactions 17</p> <p>1.2.1 Electrochemical Cells—Types and Definitions 17</p> <p>1.2.2 The Electrochemical Experiment and Variables in Electrochemical Cells 18</p> <p>1.2.3 Factors Affecting Electrode Reaction Rate and Current 21</p> <p>1.3 Mass-Transfer-Controlled Reactions 23</p> <p>1.3.1 Modes of Mass Transfer 24</p> <p>1.3.2 Semiempirical Treatment of Steady-State Mass Transfer 25</p> <p>1.4 Semiempirical Treatment of Nernstian Reactions with Coupled Chemical Reactions 31</p> <p>1.4.1 Coupled Reversible Reactions 31</p> <p>1.4.2 Coupled Irreversible Chemical Reactions 32</p> <p>1.5 Cell Resistance and the Measurement of Potential 34</p> <p>1.5.1 Components of the Applied Voltage When Current Flows 35</p> <p>1.5.2 Two-Electrode Cells 37</p> <p>1.5.3 Three-Electrode Cells 37</p> <p>1.5.4 Uncompensated Resistance 38</p> <p>1.6 The Electrode/Solution Interface and Charging Current 41</p> <p>1.6.1 The Ideally Polarizable Electrode 41</p> <p>1.6.2 Capacitance and Charge at an Electrode 41</p> <p>1.6.3 Brief Description of the Electrical Double Layer 42</p> <p>1.6.4 Double-Layer Capacitance and Charging Current 44</p> <p>1.7 Organization of this Book 51</p> <p>1.8 The Literature of Electrochemistry 52</p> <p>1.8.1 Reference Sources 52</p> <p>1.8.2 Sources on Laboratory Techniques 53</p> <p>1.8.3 Review Series 53</p> <p>1.9 Lab Note: Potentiostats and Cell Behavior 54</p> <p>1.9.1 Potentiostats 54</p> <p>1.9.2 Background Processes in Actual Cells 55</p> <p>1.9.3 Further Work with Simple RC Networks 56</p> <p>1.10 References 57</p> <p>1.11 Problems 57</p> <p><b>2 Potentials and Thermodynamics of Cells 61</b></p> <p>2.1 Basic Electrochemical Thermodynamics 61</p> <p>2.1.1 Reversibility 61</p> <p>2.1.2 Reversibility and Gibbs Free Energy 64</p> <p>2.1.3 Free Energy and Cell emf 64</p> <p>2.1.4 Half-Reactions and Standard Electrode Potentials 66</p> <p>2.1.5 Standard States and Activity 67</p> <p>2.1.6 emf and Concentration 69</p> <p>2.1.7 Formal Potentials 71</p> <p>2.1.8 Reference Electrodes 72</p> <p>2.1.9 Potential–pH Diagrams and Thermodynamic Predictions 76</p> <p>2.2 A More Detailed View of Interfacial Potential Differences 80</p> <p>2.2.1 The Physics of Phase Potentials 80</p> <p>2.2.2 Interactions Between Conducting Phases 82</p> <p>2.2.3 Measurement of Potential Differences 84</p> <p>2.2.4 Electrochemical Potentials 85</p> <p>2.2.5 Fermi Energy and Absolute Potential 88</p> <p>2.3 Liquid Junction Potentials 91</p> <p>2.3.1 Potential Differences at an Electrolyte–Electrolyte Boundary 91</p> <p>2.3.2 Types of Liquid Junctions 91</p> <p>2.3.3 Conductance, Transference Numbers, and Mobility 92</p> <p>2.3.4 Calculation of Liquid Junction Potentials 96</p> <p>2.3.5 Minimizing Liquid Junction Potentials 100</p> <p>2.3.6 Junctions of Two Immiscible Liquids 101</p> <p>2.4 Ion-Selective Electrodes 101</p> <p>2.4.1 Selective Interfaces 101</p> <p>2.4.2 Glass Electrodes 102</p> <p>2.4.3 Other Ion-Selective Electrodes 106</p> <p>2.4.4 Gas-Sensing ISEs 111</p> <p>2.5 Lab Note: Practical Use of Reference Electrodes 112</p> <p>2.5.1 Leakage at the Reference Tip 112</p> <p>2.5.2 Quasireference Electrodes 112</p> <p>2.6 References 113</p> <p>2.7 Problems 116</p> <p><b>3 Basic Kinetics of Electrode Reactions 121</b></p> <p>3.1 Review of Homogeneous Kinetics 121</p> <p>3.1.1 Dynamic Equilibrium 121</p> <p>3.1.2 The Arrhenius Equation and Potential Energy Surfaces 122</p> <p>3.1.3 Transition State Theory 123</p> <p>3.2 Essentials of Electrode Reactions 125</p> <p>3.3 Butler–Volmer Model of Electrode Kinetics 126</p> <p>3.3.1 Effects of Potential on Energy Barriers 127</p> <p>3.3.2 One-Step, One-Electron Process 127</p> <p>3.3.3 The Standard Rate Constant 130</p> <p>3.3.4 The Transfer Coefficient 131</p> <p>3.4 Implications of the Butler–Volmer Model for the One-Step, One-Electron Process 132</p> <p>3.4.1 Equilibrium Conditions and the Exchange Current 133</p> <p>3.4.2 The Current–Overpotential Equation 133</p> <p>3.4.3 Approximate Forms of the i–η Equation 135</p> <p>3.4.4 Exchange Current Plots 139</p> <p>3.4.5 Very Facile Kinetics and Reversible Behavior 139</p> <p>3.4.6 Effects of Mass Transfer 140</p> <p>3.4.7 Limits of Basic Butler–Volmer Equations 141</p> <p>3.5 Microscopic Theories of Charge Transfer 142</p> <p>3.5.1 Inner-Sphere and Outer-Sphere Electrode Reactions 142</p> <p>3.5.2 Extended Charge Transfer and Adiabaticity 143</p> <p>3.5.3 The Marcus Microscopic Model 146</p> <p>3.5.4 Implications of the Marcus Theory 152</p> <p>3.5.5 A Model Based on Distributions of Energy States 162</p> <p>3.6 Open-Circuit Potential and Multiple Half-Reactions at an Electrode 168</p> <p>3.6.1 Open-Circuit Potential in Multicomponent Systems 169</p> <p>3.6.2 Establishment or Loss of Nernstian Behavior at an Electrode 170</p> <p>3.6.3 Multiple Half-Reaction Currents in i–E Curves 171</p> <p>3.7 Multistep Mechanisms 171</p> <p>3.7.1 The Primacy of One-Electron Transfers 172</p> <p>3.7.2 Rate-Determining, Outer-Sphere Electron Transfer 173</p> <p>3.7.3 Multistep Processes at Equilibrium 173</p> <p>3.7.4 Nernstian Multistep Processes 174</p> <p>3.7.5 Quasireversible and Irreversible Multistep Processes 174</p> <p>3.8 References 177</p> <p>3.9 Problems 180</p> <p><b>4 Mass Transfer by Migration and Diffusion 183</b></p> <p>4.1 General Mass-Transfer Equations 183</p> <p>4.2 Migration in Bulk Solution 186</p> <p>4.3 Mixed Migration and Diffusion Near an Active Electrode 187</p> <p>4.3.1 Balance Sheets for Mass Transfer During Electrolysis 188</p> <p>4.3.2 Utility of a Supporting Electrolyte 192</p> <p>4.4 Diffusion 193</p> <p>4.4.1 A Microscopic View 193</p> <p>4.4.2 Fick’s Laws of Diffusion 196</p> <p>4.4.3 Flux of an Electroreactant at an Electrode Surface 199</p> <p>4.5 Formulation and Solution of Mass-Transfer Problems 199</p> <p>4.5.1 Initial and Boundary Conditions in Electrochemical Problems 200</p> <p>4.5.2 General Formulation of a Linear Diffusion Problem 201</p> <p>4.5.3 Systems Involving Migration or Convection 202</p> <p>4.5.4 Practical Means for Reaching Solutions 202</p> <p>4.6 References 204</p> <p>4.7 Problems 205</p> <p><b>5 Steady-State Voltammetry at Ultramicroelectrodes 207</b></p> <p>5.1 Steady-State Voltammetry at a Spherical UME 207</p> <p>5.1.1 Steady-State Diffusion 208</p> <p>5.1.2 Steady-State Current 211</p> <p>5.1.3 Convergence on the Steady State 211</p> <p>5.1.4 Steady-State Voltammetry 212</p> <p>5.2 Shapes and Properties of Ultramicroelectrodes 214</p> <p>5.2.1 Spherical or Hemispherical UME 215</p> <p>5.2.2 Disk UME 215</p> <p>5.2.3 Cylindrical UME 221</p> <p>5.2.4 Band UME 221</p> <p>5.2.5 Summary of Steady-State Behavior at UMEs 222</p> <p>5.3 Reversible Electrode Reactions 224</p> <p>5.3.1 Shape of the Wave 224</p> <p>5.3.2 Applications of Reversible i–E Curves 226</p> <p>5.4 Quasireversible and Irreversible Electrode Reactions 230</p> <p>5.4.1 Effect of Electrode Kinetics on Steady-State Responses 230</p> <p>5.4.2 Total Irreversibility 232</p> <p>5.4.3 Kinetic Regimes 234</p> <p>5.4.4 Influence of Electrode Shape 234</p> <p>5.4.5 Applications of Irreversible i–E Curves 235</p> <p>5.4.6 Evaluation of Kinetic Parameters by Varying Mass-Transfer Rates 237</p> <p>5.5 Multicomponent Systems and Multistep Charge Transfers 239</p> <p>5.6 Additional Attributes of Ultramicroelectrodes 241</p> <p>5.6.1 Uncompensated Resistance at a UME 241</p> <p>5.6.2 Effects of Conductivity on Voltammetry at a UME 242</p> <p>5.6.3 Applications Based on Spatial Resolution 243</p> <p>5.7 Migration in Steady-State Voltammetry 245</p> <p>5.7.1 Mathematical Approach to Problems Involving Migration 245</p> <p>5.7.2 Concentration Profiles in the Diffusion–Migration Layer 246</p> <p>5.7.3 Wave Shape at Low Electrolyte Concentration 248</p> <p>5.7.4 Effects of Migration on Wave Height in SSV 248</p> <p>5.8 Analysis at High Analyte Concentrations 251</p> <p>5.9 Lab Note: Preparation of Ultramicroelectrodes 253</p> <p>5.9.1 Preparation and Characterization of UMEs 254</p> <p>5.9.2 Testing the Integrity of a UME 254</p> <p>5.9.3 Estimating the Size of a UME 256</p> <p>5.10 References 257</p> <p>5.11 Problems 258</p> <p><b>6 Transient Methods Based on Potential Steps 261</b></p> <p>6.1 Chronoamperometry Under Diffusion Control 261</p> <p>6.1.1 Linear Diffusion at a Plane 262</p> <p>6.1.2 Response at a Spherical Electrode 265</p> <p>6.1.3 Transients at Other Ultramicroelectrodes 267</p> <p>6.1.4 Information from Chronoamperometric Results 270</p> <p>6.1.5 Microscopic and Geometric Areas 271</p> <p>6.2 Sampled-Transient Voltammetry for Reversible Electrode Reactions 275</p> <p>6.2.1 A Step to an Arbitrary Potential 276</p> <p>6.2.2 Shape of the Voltammogram 277</p> <p>6.2.3 Concentration Profiles When R Is Initially Absent 278</p> <p>6.2.4 Simplified Current–Concentration Relationships 279</p> <p>6.2.5 Applications of Reversible i–E Curves 279</p> <p>6.3 Sampled-Transient Voltammetry for Quasireversible and Irreversible Electrode Reactions 279</p> <p>6.3.1 Effect of Electrode Kinetics on Transient Behavior 280</p> <p>6.3.2 Sampled-Transient Voltammetry for Reduction of O 282</p> <p>6.3.3 Sampled Transient Voltammetry for Oxidation of R 284</p> <p>6.3.4 Totally Irreversible Reactions 285</p> <p>6.3.5 Kinetic Regimes 287</p> <p>6.3.6 Applications of Irreversible i–E Curves 287</p> <p>6.4 Multicomponent Systems and Multistep Charge Transfers 289</p> <p>6.5 Chronoamperometric Reversal Techniques 290</p> <p>6.5.1 Approaches to the Problem 292</p> <p>6.5.2 Current–Time Responses 293</p> <p>6.6 Chronocoulometry 294</p> <p>6.6.1 Large-Amplitude Potential Step 295</p> <p>6.6.2 Reversal Experiments Under Diffusion Control 296</p> <p>6.6.3 Effects of Heterogeneous Kinetics 299</p> <p>6.7 Cell Time Constants at Microelectrodes 300</p> <p>6.8 Lab Note: Practical Concerns with Potential Step Methods 303</p> <p>6.8.1 Preparation of the Electrode Surface at a Microelectrode 303</p> <p>6.8.2 Interference from Charging Current 305</p> <p>6.9 References 306</p> <p>6.10 Problems 307</p> <p><b>7 Linear Sweep and Cyclic Voltammetry 311</b></p> <p>7.1 Transient Responses to a Potential Sweep 311</p> <p>7.2 Nernstian (Reversible) Systems 313</p> <p>7.2.1 Linear Sweep Voltammetry 313</p> <p>7.2.2 Cyclic Voltammetry 321</p> <p>7.3 Quasireversible Systems 325</p> <p>7.3.1 Linear Sweep Voltammetry 326</p> <p>7.3.2 Cyclic Voltammetry 326</p> <p>7.4 Totally Irreversible Systems 329</p> <p>7.4.1 Linear Sweep Voltammetry 329</p> <p>7.4.2 Cyclic Voltammetry 332</p> <p>7.5 Multicomponent Systems and Multistep Charge Transfers 332</p> <p>7.5.1 Multicomponent Systems 332</p> <p>7.5.2 Multistep Charge Transfers 333</p> <p>7.6 Fast Cyclic Voltammetry 334</p> <p>7.7 Convolutive Transformation 336</p> <p>7.8 Voltammetry at Liquid–Liquid Interfaces 339</p> <p>7.8.1 Experimental Approach to Voltammetry 340</p> <p>7.8.2 Effect of Interfacial Potential on Composition 341</p> <p>7.8.3 Voltammetric Behavior 341</p> <p>7.9 Lab Note: Practical Aspects of Cyclic Voltammetry 344</p> <p>7.9.1 Basic Experimental Conditions 344</p> <p>7.9.2 Choice of Initial and Final Potentials 345</p> <p>7.9.3 Deaeration 347</p> <p>7.10 References 347</p> <p>7.11 Problems 349</p> <p><b>8 Polarography, Pulse Voltammetry, and Square-Wave Voltammetry 355</b></p> <p>8.1 Polarography 355</p> <p>8.1.1 The Dropping Mercury Electrode 355</p> <p>8.1.2 The IlkovičEquation 356</p> <p>8.1.3 Polarographic Waves 357</p> <p>8.1.4 Practical Advantages of the DME 358</p> <p>8.1.5 Polarographic Analysis 358</p> <p>8.1.6 Residual Current and Detection Limits 359</p> <p>8.2 Normal Pulse Voltammetry 361</p> <p>8.2.1 Implementation 362</p> <p>8.2.2 Renewal at Stationary Electrodes 363</p> <p>8.2.3 Normal Pulse Polarography 364</p> <p>8.2.4 Practical Application 366</p> <p>8.3 Reverse Pulse Voltammetry 367</p> <p>8.4 Differential Pulse Voltammetry 369</p> <p>8.4.1 Concept of the Method 370</p> <p>8.4.2 Theory 371</p> <p>8.4.3 Renewal vs. Pre-Electrolysis 374</p> <p>8.4.4 Residual Currents 375</p> <p>8.4.5 Differential Pulse Polarography 375</p> <p>8.5 Square-Wave Voltammetry 376</p> <p>8.5.1 Experimental Concept and Practice 376</p> <p>8.5.2 Theoretical Prediction of Response 377</p> <p>8.5.3 Background Currents 380</p> <p>8.5.4 Applications 381</p> <p>8.6 Analysis by Pulse Voltammetry 383</p> <p>8.7 References 385</p> <p>8.8 Problems 386</p> <p><b>9 Controlled-Current Techniques 389</b></p> <p>9.1 Introduction to Chronopotentiometry 389</p> <p>9.2 Theory of Controlled-Current Methods 391</p> <p>9.2.1 General Treatment for Linear Diffusion 391</p> <p>9.2.2 Constant-Current Electrolysis—The Sand Equation 392</p> <p>9.2.3 Programmed Current Chronopotentiometry 394</p> <p>9.3 Potential–Time Curves in Constant-Current Electrolysis 394</p> <p>9.3.1 Reversible (Nernstian) Waves 394</p> <p>9.3.2 Totally Irreversible Waves 394</p> <p>9.3.3 Quasireversible Waves 395</p> <p>9.3.4 Practical Issues in the Measurement of Transition Time 396</p> <p>9.4 Reversal Techniques 398</p> <p>9.4.1 Response Function Principle 398</p> <p>9.4.2 Current Reversal 398</p> <p>9.5 Multicomponent Systems and Multistep Reactions 400</p> <p>9.6 The Galvanostatic Double Pulse Method 401</p> <p>9.7 Charge Step (Coulostatic) Methods 403</p> <p>9.7.1 Small Excursions 404</p> <p>9.7.2 Large Excursions 405</p> <p>9.7.3 Coulostatic Perturbation by Temperature Jump 405</p> <p>9.8 References 406</p> <p>9.9 Problems 407</p> <p><b>10 Methods Involving Forced Convection—Hydrodynamic Methods 411</b></p> <p>10.1 Theory of Convective Systems 411</p> <p>10.1.1 The Convective-Diffusion Equation 412</p> <p>10.1.2 Determination of the Velocity Profile 412</p> <p>10.2 Rotating Disk Electrode 414</p> <p>10.2.1 The Velocity Profile at a Rotating Disk 414</p> <p>10.2.2 Solution of the Convective-Diffusion Equation 416</p> <p>10.2.3 Concentration Profile 418</p> <p>10.2.4 General i–E Curves at the RDE 419</p> <p>10.2.5 The Koutecký–Levich Method 420</p> <p>10.2.6 Current Distribution at the RDE 423</p> <p>10.2.7 Practical Considerations for Application of the RDE 426</p> <p>10.3 Rotating Ring and Ring-Disk Electrodes 426</p> <p>10.3.1 Rotating Ring Electrode 427</p> <p>10.3.2 The Rotating Ring-Disk Electrode 428</p> <p>10.4 Transient Currents 432</p> <p>10.4.1 Transients at the RDE 432</p> <p>10.4.2 Transients at the RRDE 433</p> <p>10.5 Modulation of the RDE 435</p> <p>10.6 Electrohydrodynamic Phenomena 436</p> <p>10.7 References 439</p> <p>10.8 Problems 440</p> <p><b>11 Electrochemical Impedance Spectroscopy and ac Voltammetry 443</b></p> <p>11.1 A Simple Measurement of Cell Impedance 444</p> <p>11.2 Brief Review of ac Circuits 446</p> <p>11.3 Equivalent Circuits of a Cell 450</p> <p>11.3.1 The Randles Equivalent Circuit 451</p> <p>11.3.2 Interpretation of the Faradaic Impedance 452</p> <p>11.3.3 Behavior and Uses of the Faradaic Impedance 455</p> <p>11.4 Electrochemical Impedance Spectroscopy 458</p> <p>11.4.1 Conditions of Measurement 458</p> <p>11.4.2 A System with Simple Faradaic Kinetics 460</p> <p>11.4.3 Measurement of Resistance and Capacitance 465</p> <p>11.4.4 A Confined Electroactive Domain 466</p> <p>11.4.5 Other Applications 470</p> <p>11.5 ac Voltammetry 470</p> <p>11.5.1 Reversible Systems 470</p> <p>11.5.2 Quasireversible and Irreversible Systems 473</p> <p>11.5.3 Cyclic ac Voltammetry 477</p> <p>11.6 Nonlinear Responses 477</p> <p>11.6.1 Second Harmonic ac Voltammetry 478</p> <p>11.6.2 Large Amplitude ac Voltammetry 479</p> <p>11.7 Chemical Analysis by ac Voltammetry 481</p> <p>11.8 Instrumentation for Electrochemical Impedance Methods 482</p> <p>11.8.1 Frequency-Domain Instruments 482</p> <p>11.8.2 Time-Domain Instruments 483</p> <p>11.9 Analysis of Data in the Laplace Plane 485</p> <p>11.10 References 485</p> <p>11.11 Problems 487</p> <p><b>12 Bulk Electrolysis 489</b></p> <p>12.1 General Considerations 490</p> <p>12.1.1 Completeness of an Electrode Process 490</p> <p>12.1.2 Current Efficiency 491</p> <p>12.1.3 Experimental Concerns 491</p> <p>12.2 Controlled-Potential Methods 495</p> <p>12.2.1 Current–Time Behavior 495</p> <p>12.2.2 Practical Aspects 497</p> <p>12.2.3 Coulometry 498</p> <p>12.2.4 Electrogravimetry 500</p> <p>12.2.5 Electroseparations 501</p> <p>12.3 Controlled-Current Methods 501</p> <p>12.3.1 Characteristics of Controlled-Current Electrolysis 501</p> <p>12.3.2 Coulometric Titrations 503</p> <p>12.3.3 Practical Aspects of Constant-Current Electrolysis 506</p> <p>12.4 Electrometric End-Point Detection 507</p> <p>12.4.1 Current–Potential Curves During Titration 507</p> <p>12.4.2 Potentiometric Methods 508</p> <p>12.4.3 Amperometric Methods 509</p> <p>12.5 Flow Electrolysis 510</p> <p>12.5.1 Mathematical Treatment 510</p> <p>12.5.2 Dual-Electrode Flow Cells 515</p> <p>12.5.3 Microfluidic Flow Cells 516</p> <p>12.6 Thin-Layer Electrochemistry 521</p> <p>12.6.1 Chronoamperometry and Coulometry 521</p> <p>12.6.2 Potential Sweep in a Nernstian System 524</p> <p>12.6.3 Dual-Electrode Thin-Layer Cells 526</p> <p>12.6.4 Applications of the Thin-Layer Concept 526</p> <p>12.7 Stripping Analysis 527</p> <p>12.7.1 Introduction 527</p> <p>12.7.2 Principles and Theory 528</p> <p>12.7.3 Applications and Variations 529</p> <p>12.8 References 531</p> <p>12.9 Problems 534</p> <p><b>13 Electrode Reactions with Coupled Homogeneous Chemical Reactions 539</b></p> <p>13.1 Classification of Reactions 539</p> <p>13.1.1 Reactions with One E-Step 541</p> <p>13.1.2 Reactions with Two or More E-Steps 542</p> <p>13.2 Impact of Coupled Reactions on Cyclic Voltammetry 545</p> <p>13.2.1 Diagnostic Criteria 545</p> <p>13.2.2 Characteristic Times 547</p> <p>13.2.3 An Example 547</p> <p>13.2.4 Including Kinetics in Theory 548</p> <p>13.2.5 Comparative Simulation 551</p> <p>13.3 Survey of Behavior 552</p> <p>13.3.1 Following Reaction—case E R c I 552</p> <p>13.3.2 Effect of Electrode Kinetics in Ec I Systems 556</p> <p>13.3.3 Bidirectional Following Reaction 558</p> <p>13.3.4</p> <p>catalytic Reaction—case E r c ′ I</p> <p><i>561</i></p> <p>13.3.5 Preceding Reaction—Case C r E r 564</p> <p>13.3.6 Multistep Electron Transfers 569</p> <p>13.3.7 ECE/DISP Reactions 576</p> <p>13.3.8 Concerted vs.StepwiseReaction 584</p> <p>13.3.9 Elaboration of Reaction Schemes 590</p> <p>13.4 Behavior with Other Electrochemical Methods 591</p> <p>13.5 References 593</p> <p>13.6 Problems 595</p> <p><b>14 Double-Layer Structure and Adsorption 599</b></p> <p>14.1 Thermodynamics of the Double Layer 599</p> <p>14.1.1 The Gibbs Adsorption Isotherm 599</p> <p>14.1.2 The Electrocapillary Equation 601</p> <p>14.1.3 Relative Surface Excesses 601</p> <p>14.2 Experimental Evaluations 602</p> <p>14.2.1 Electrocapillarity 602</p> <p>14.2.2 Excess Charge and Capacitance 603</p> <p>14.2.3 Relative Surface Excesses 606</p> <p>14.3 Models for Double-Layer Structure 606</p> <p>14.3.1 The Helmholtz Model 607</p> <p>14.3.2 The Gouy–Chapman Theory 609</p> <p>14.3.3 Stern’s Modification 614</p> <p>14.3.4 Specific Adsorption 617</p> <p>14.4 Studies at Solid Electrodes 619</p> <p>14.4.1 Well-Defined Single-Crystal Electrode Surfaces 620</p> <p>14.4.2 The Double Layer at Solids 623</p> <p>14.5 Extent and Rate of Specific Adsorption 627</p> <p>14.5.1 Nature and Extent of Specific Adsorption 628</p> <p>14.5.2 Electrosorption Valency 629</p> <p>14.5.3 Adsorption Isotherms 630</p> <p>14.5.4 Rate of Adsorption 633</p> <p>14.6 Practical Aspects of Adsorption 634</p> <p>14.7 Double-Layer Effects on Electrode Reaction Rates 636</p> <p>14.7.1 Introduction and Principles 636</p> <p>14.7.2 Double-Layer Effects Without Specific Adsorption of Electrolyte 638</p> <p>14.7.3 Double-Layer Effects with Specific Adsorption 639</p> <p>14.7.4 Diffuse Double-Layer Effects on Mass Transport 640</p> <p>14.8 References 645</p> <p>14.9 Problems 648</p> <p><b>15 Inner-Sphere Electrode Reactions and Electrocatalysis 653</b></p> <p>15.1 Inner-Sphere Heterogenous Electron-Transfer Reactions 653</p> <p>15.1.1 TheRoleoftheElectrodeSurface 653</p> <p>15.1.2 Energetics of 1e Electron-Transfer Reactions 654</p> <p>15.1.3 Adsorption Energies 657</p> <p>15.2 Electrocatalytic Reaction Mechanisms 657</p> <p>15.2.1 Hydrogen Evolution Reaction 657</p> <p>15.2.2 Tafel Plot Analysis of HER Kinetics 660</p> <p>15.3 Additional Examples of Inner-Sphere Reactions 667</p> <p>15.3.1 Oxygen Reduction Reaction 667</p> <p>15.3.2 Chlorine Evolution 670</p> <p>15.3.3 Methanol Oxidation 670</p> <p>15.3.4 CO 2 Reduction 673</p> <p>15.3.5 Oxidation of NH 3 to N 2 674</p> <p>15.3.6 Organic Halide Reduction 676</p> <p>15.3.7 Hydrogen Peroxide Oxidation and Reduction 677</p> <p>15.4 Computational Analyses of Inner-Sphere Electron-Transfer Reactions 678</p> <p>15.4.1 Density Functional Theory Analysis of Electrocatalytic Reactions 679</p> <p>15.4.2 Hydrogen Evolution Reaction 679</p> <p>15.4.3 Oxygen Reduction Reaction 681</p> <p>15.5 Electrocatalytic Correlations 684</p> <p>15.6 Electrochemical Phase Transformations 688</p> <p>15.6.1 Nucleation and Growth of a New Phase 688</p> <p>15.6.2 Classical Nucleation Theory 689</p> <p>15.6.3 Electrodeposition 699</p> <p>15.6.4 Gas Evolution 707</p> <p>15.7 References 713</p> <p>15.8 Problems 718</p> <p><b>16 Electrochemical Instrumentation 721</b></p> <p>16.1 Operational Amplifiers 721</p> <p>16.1.1 Ideal Properties 721</p> <p>16.1.2 Nonidealities 723</p> <p>16.2 Current Feedback 725</p> <p>16.2.1 Current Follower 725</p> <p>16.2.2 Scaler/Inverter 726</p> <p>16.2.3 Adders 726</p> <p>16.2.4 Integrators 727</p> <p>16.3 Voltage Feedback 728</p> <p>16.3.1 Voltage Follower 728</p> <p>16.3.2 Control Functions 729</p> <p>16.4 Potentiostats 730</p> <p>16.4.1 Basic Considerations 730</p> <p>16.4.2 The Adder Potentiostat 731</p> <p>16.4.3 Refinements to the Adder Potentiostat 732</p> <p>16.4.4 Bipotentiostats 733</p> <p>16.4.5 Four-Electrode Potentiostats 734</p> <p>16.5 Galvanostats 734</p> <p>16.6 Integrated Electrochemical Instrumentation 736</p> <p>16.7 Difficulties with Potential Control 737</p> <p>16.7.1 Types of Control Problems 737</p> <p>16.7.2 Cell Properties and Electrode Placement 740</p> <p>16.7.3 Electronic Compensation of Resistance 740</p> <p>16.8 Measurement of Low Currents 744</p> <p>16.8.1 Fundamental Limits 744</p> <p>16.8.2 Practical Considerations 746</p> <p>16.8.3 Current Amplifier 746</p> <p>16.8.4 Simplified Instruments and Cells 746</p> <p>16.9 Instruments for Short Time Scales 748</p> <p>16.10 Lab Note: Practical Use of Electrochemical Instruments 749</p> <p>16.10.1 Caution Regarding Electrochemical Workstations 749</p> <p>16.10.2 Troubleshooting Electrochemical Systems 749</p> <p>16.11 References 751</p> <p>16.12 Problems 752</p> <p><b>17 Electroactive Layers and Modified Electrodes 755</b></p> <p>17.1 Monolayers and Submonolayers on Electrodes 756</p> <p>17.2 Cyclic Voltammetry of Adsorbed Layers 757</p> <p>17.2.1 Fundamentals 757</p> <p>17.2.2 Reversible Adsorbate Couples 758</p> <p>17.2.3 Irreversible Adsorbate Couples 763</p> <p>17.2.4 Nernstian Processes Involving Adsorbates and Solutes 766</p> <p>17.2.5 More Complex Systems 770</p> <p>17.2.6 Electric-Field-Driven Acid–Base Chemistry in Adsorbate Layers 771</p> <p>17.3 Other Useful Methods for Adsorbed Monolayers 775</p> <p>17.3.1 Chronocoulometry 775</p> <p>17.3.2 Coulometry in Thin-Layer Cells 777</p> <p>17.3.3 Impedance Measurements 778</p> <p>17.3.4 Chronopotentiometry 779</p> <p>17.4 Thick Modification Layers on Electrodes 780</p> <p>17.5 Dynamics in Modification Layers 782</p> <p>17.5.1 Steady State at a Rotating Disk 783</p> <p>17.5.2 Principal Dynamic Processes in Modifying Films 784</p> <p>17.5.3 Interplay of Dynamical Elements 789</p> <p>17.6 Blocking Layers 791</p> <p>17.6.1 Permeation Through Pores and Pinholes 792</p> <p>17.6.2 Tunneling Through Blocking Films 796</p> <p>17.7 Other Methods for Characterizing Layers on Electrodes 798</p> <p>17.8 Electrochemical Methods Based on Electroactive Layers or Electrode Modification 798</p> <p>17.8.1 Electrocatalysis 799</p> <p>17.8.2 Bioelectrocatalysis Based on Enzyme-Modified Electrodes 799</p> <p>17.8.3 Electrochemical Sensors 803</p> <p>17.8.4 Faradaic Electrochemical Measurements in vivo 809</p> <p>17.9 References 812</p> <p>17.10 Problems 817</p> <p><b>18 Scanning Electrochemical Microscopy 819</b></p> <p>18.1 Principles 819</p> <p>18.2 Approach Curves 821</p> <p>18.3 Imaging Surface Topography and Reactivity 825</p> <p>18.3.1 Imaging Based on Conductivity of the Substrate 825</p> <p>18.3.2 Imaging Based on Heterogeneous Electron-Transfer Reactivity 826</p> <p>18.3.3 Simultaneous Imaging of Topography and Reactivity 827</p> <p>18.4 Measurements of Kinetics 828</p> <p>18.4.1 Heterogeneous Electron-Transfer Reactions 828</p> <p>18.4.2 Homogeneous Reactions 831</p> <p>18.5 Surface Interrogation 835</p> <p>18.6 Potentiometric Tips 839</p> <p>18.7 Other Applications 839</p> <p>18.7.1 Detection of Species Released from Surfaces, Films, or Pores 839</p> <p>18.7.2 Biological Systems 840</p> <p>18.7.3 Probing the Interior of a Layer on a Substrate 841</p> <p>18.8 Scanning Electrochemical Cell Microscopy 841</p> <p>18.9 References 846</p> <p>18.10 Problems 849</p> <p><b>19 Single-Particle Electrochemistry 851</b></p> <p>19.1 General Considerations in Single-Particle Electrochemistry 851</p> <p>19.2 Particle Collision Experiments 852</p> <p>19.3 Particle Collision Rate at a Disk-Shaped UME 854</p> <p>19.3.1 Collision Frequency 854</p> <p>19.3.2 Variance in the Number of Particle Collisions 855</p> <p>19.3.3 Time of First Arrival 856</p> <p>19.4 Nanoparticle Collision Behavior 857</p> <p>19.4.1 Blocking Collisions 857</p> <p>19.4.2 Electrocatalytic Amplification Collisions 861</p> <p>19.4.3 Electrolysis Collisions 864</p> <p>19.5 Electrochemistry at Single Atoms and Atomic Clusters 870</p> <p>19.6 Single-Molecule Electrochemistry 875</p> <p>19.7 References 879</p> <p>19.8 Problems 881</p> <p><b>20 Photoelectrochemistry and Electrogenerated Chemiluminescence 885</b></p> <p>20.1 Solid Materials 885</p> <p>20.1.1 The Band Model 885</p> <p>20.1.2 Categories of Pure Crystalline Solids 886</p> <p>20.1.3 Doped Semiconductors 889</p> <p>20.1.4 Fermi Energy 890</p> <p>20.1.5 Highly Conducting Oxides 891</p> <p>20.2 Semiconductor Electrodes 892</p> <p>20.2.1 Interface at a Semiconducting Electrode in the Dark 892</p> <p>20.2.2 Current–Potential Curves at Semiconductor Electrodes 896</p> <p>20.2.3 Conducting Polymer Electrodes 899</p> <p>20.3 Photoelectrochemistry at Semiconductors 901</p> <p>20.3.1 Photoeffects at Semiconductor Electrodes 901</p> <p>20.3.2 Photoelectrochemical Systems 903</p> <p>20.3.3 Dye Sensitization 905</p> <p>20.3.4 Surface Photocatalytic Processes at Semiconductor Particles 906</p> <p>20.4 Radiolytic Products in Solution 908</p> <p>20.4.1 Photoemission of Electrons from an Electrode 908</p> <p>20.4.2 Detection and Use of Radiolytic Products in Solution 909</p> <p>20.4.3 Photogalvanic Cells 909</p> <p>20.5 Electrogenerated Chemiluminescence 910</p> <p>20.5.1 Chemical Fundamentals 910</p> <p>20.5.2 Fundamental Studies of Radical-Ion Annihilation 912</p> <p>20.5.3 Single-Potential Generation Based on a Coreactant 916</p> <p>20.5.4 ECL Based on Quantum Dots 917</p> <p>20.5.5 Analytical Applications of ECL 918</p> <p>20.5.6 ECL Beyond the Solution Phase 922</p> <p>20.6 References 922</p> <p>20.7 Problems 927</p> <p><b>21 In situ Characterization of Electrochemical Systems 931</b></p> <p>21.1 Microscopy 931</p> <p>21.1.1 Scanning Tunneling Microscopy 932</p> <p>21.1.2 Atomic Force Microscopy 934</p> <p>21.1.3 Optical Microscopy 937</p> <p>21.1.4 Transmission Electron Microscopy 938</p> <p>21.2 Quartz Crystal Microbalance 940</p> <p>21.2.1 Basic Method 940</p> <p>21.2.2 QCM with Dissipation Monitoring 942</p> <p>21.3 UV–Visible Spectrometry 942</p> <p>21.3.1 Absorption Spectroscopy with Thin-Layer Cells 942</p> <p>21.3.2 Ellipsometry 945</p> <p>21.3.3 Surface Plasmon Resonance 946</p> <p>21.4 Vibrational Spectroscopy 947</p> <p>21.4.1 Infrared Spectroscopy 947</p> <p>21.4.2 Raman Spectroscopy 950</p> <p>21.5 X-Ray Methods 953</p> <p>21.6 Mass Spectrometry 954</p> <p>21.7 Magnetic Resonance Spectroscopy 955</p> <p>21.7.1 Esr 955</p> <p>21.7.2 Nmr 956</p> <p>21.8 Ex-situ Techniques 957</p> <p>21.8.1 Electron Microscopy 957</p> <p>21.8.2 Electron and Ion Spectrometry 958</p> <p>21.9 References 960</p> <p>Appendix A Mathematical Methods 967</p> <p>A.1 Solving Differential Equations by the Laplace Transform Technique 967</p> <p>A.1.1 Partial Differential Equations 967</p> <p>A.1.2 Introduction to the Laplace Transformation 968</p> <p>A.1.3 Fundamental Properties of the Transform 969</p> <p>A.1.4 Solving Ordinary Differential Equations by Laplace Transformation 970</p> <p>A.1.5 Simultaneous Linear Ordinary Differential Equations 972</p> <p>A.1.6 Mass-Transfer Problems Based on Partial Differential Equations 973</p> <p>A.1.7 The Zero-Shift Theorem 975</p> <p>A.2 Taylor Expansions 976</p> <p>A.2.1 Expansion of a Function of Several Variables 976</p> <p>A.2.2 Expansion of a Function of a Single Variable 977</p> <p>A.2.3 Maclaurin Series 977</p> <p>A.3 The Error Function and the Gaussian Distribution 977</p> <p>A.4 Leibnitz Rule 979</p> <p>A.5 Complex Notation 979</p> <p>A.6 Fourier Series and Fourier Transformation 981</p> <p>A.7 References 982</p> <p>A.8 Problems 983</p> <p>Appendix B Basic Concepts of Simulation 985</p> <p>B.1 Setting Up the Model 985</p> <p>B.1.1 A Discrete System 985</p> <p>B.1.2 Diffusion 986</p> <p>B.1.3 Dimensionless Parameters 987</p> <p>B.1.4 Time 990</p> <p>B.1.5 Distance 990</p> <p>B.1.6 Current 991</p> <p>B.1.7 Thickness of the Diffusion Layer 992</p> <p>B.1.8 Diffusion Coefficients 993</p> <p>B.2 An Example 993</p> <p>B.2.1 Organization of the Spreadsheet 993</p> <p>B.2.2 Concentration Arrays 996</p> <p>B.2.3 Results and Error Detection 996</p> <p>B.2.4 Performance 997</p> <p>B.3 Incorporating Homogeneous Kinetics 999</p> <p>B.3.1 Unimolecular Reactions 999</p> <p>B.3.2 Bimolecular Reactions 1000</p> <p>B.4 Boundary Conditions for Various Techniques 1001</p> <p>B.4.1 Potential Steps in Nernstian Systems 1001</p> <p>B.4.2 Heterogeneous Kinetics 1002</p> <p>B.4.3 Potential Sweeps 1003</p> <p>B.4.4 Controlled Current 1003</p> <p>B.5 More Complex Systems 1004</p> <p>B.6 References 1005</p> <p>B.7 Problems 1005</p> <p>Appendix C Reference Tables 1007</p> <p>References 1013</p> <p>Index 1015</p>
<p>"...this third edition of the book that I consider as the Electrochemistry bible is consistent with the evolution and development of electrochemistry in these last twenty years. The new chapters highlight the most recent advances and innovative techniques while the chapters dealing with older electrochemical methods have been lightened.... The authors have made a great job in this third edition to update the book with the electrochemistry currently studied and practiced in laboratories.... Both junior and senior electrochemists, from novices to experts, should have this book available in the laboratory."<br />—<b>Estelle Lebègue, <i>Transition Metal Chemistry</i> (2023) 48:433–436 https://doi.org/10.1007/s11243-023-00555-6</b></p>
<p><b>Allen J. Bard </b>is Professor and Hackerman-Welch Regents Chair in Chemistry at the University of Texas at Austin in the United States. His research is focused on the application of electrochemical methods to the study of chemical problems.</p> <p><b>Larry R. Faulkner</b> is President Emeritus of the University of Texas at Austin in the United States. He has served on the chemistry faculties of Harvard University, the University of Illinois, and the University of Texas. <p><b>Henry S. White</b> is Distinguished Professor and John A. Widstoe Presidential Chair in the Department of Chemistry at the University of Utah in the United States. His research is focused on experimental and theoretical aspects of electrochemistry.
<p><b>The latest edition of a classic textbook in electrochemistry </b></p> <p>The third edition of <i>Electrochemical Methods</i> has been extensively revised to reflect the evolution of electrochemistry over the past two decades, highlighting significant developments in the understanding of electrochemical phenomena and emerging experimental tools, while extending the book’s value as a general introduction to electrochemical methods. <p>This authoritative resource for new students and practitioners provides must-have information crucial to a successful career in research. The authors focus on methods that are extensively practiced and on phenomenological questions of current concern. <p>This latest edition of<i> Electrochemical Methods </i>contains numerous problems and chemical examples, with illustrations that serve to illuminate the concepts contained within in a way that will assist both student and mid-career practitioner. <p>Significant updates and new content in this third edition include: <ul><li>An extensively revised introductory chapter on electrode processes, designed for new readers coming into electrochemistry from diverse backgrounds</li> <li>New chapters on steady-state voltammetry at ultramicroelectrodes, inner-sphere electrode reactions and electrocatalysis, and single-particle electrochemistry</li> <li>Extensive treatment of Marcus kinetics as applied to electrode reactions, a more detailed introduction to migration, and expanded coverage of electrochemical impedance spectroscopy</li> <li>The inclusion of Lab Notes in many chapters to help newcomers with the transition from concept to practice in the laboratory</li></ul> <p>The new edition has been revised to address a broader audience of scientists and engineers, designed to be accessible to readers with a basic foundation in university chemistry, physics and mathematics. It is a self-contained volume, developing all key ideas from the fundamental principles of chemistry and physics. <p>Perfect for senior undergraduate and graduate students taking courses in electrochemistry, physical and analytical chemistry, this is also an indispensable resource for researchers and practitioners working in fields including electrochemistry and electrochemical engineering, energy storage and conversion, analytical chemistry and sensors.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €