Details

Deepwater Flexible Risers and Pipelines


Deepwater Flexible Risers and Pipelines


1. Aufl.

von: Yong Bai

217,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 31.12.2020
ISBN/EAN: 9781119322733
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The technology, processes, materials, and theories surrounding pipeline construction, application, and troubleshooting are constantly changing, and this new series, <i>Advances in Pipes and Pipelines</i>, has been created to meet the needs of engineers and scientists to keep them up to date and informed of all of these advances.  This second volume in the series focuses on flexible pipelines, risers, and umbilicals, offering the engineer the most thorough coverage of the state-of-the-art available. The authors of this work have written numerous books and papers on these subjects and are some of the most influential authors on flexible pipes in the world, contributing much of the literature on this subject to the industry.  This new volume is a presentation of some of the most cutting-edge technological advances in technical publishing.</p> <p>The first volume in this series, published by Wiley-Scrivener, is <i>Flexible Pipes</i>, available at www.wiley.com. Laying the foundation for the series, it is a groundbreaking work, written by some of the world's foremost authorities on pipes and pipelines.  Continuing in this series, the editors have compiled the second volume, equally as groundbreaking, expanding the scope to pipelines, risers, and umbilicals.</p> <p>This is the most comprehensive and in-depth series on pipelines, covering not just the various materials and their aspects that make them different, but every process that goes into their installation, operation, and design. This is the future of pipelines, and it is an important breakthrough. A must-have for the veteran engineer and student alike, this volume is an important new advancement in the energy industry, a strong link in the chain of the world's energy production.</p>
<p>Preface xix</p> <p>Acknowledgment xxi</p> <p>About the Author xxiii</p> <p><b>Part 1: Local Analysis 1</b></p> <p><b>1 Introduction 3</b></p> <p>1.1 Flexible Pipelines Overview 3</p> <p>1.2 Environmental Conditions 4</p> <p>1.3 Flexible Pipeline Geometry 7</p> <p>1.4 Base Case-Failure Modes and Design Criteria 9</p> <p>1.5 Reinforcements 10</p> <p>1.6 Project and Objectives 12</p> <p>References 12</p> <p><b>2 Structural Design of Flexible Pipes in Different Water Depth 15</b></p> <p>2.1 Introduction 15</p> <p>2.2 Theoretical Models 15</p> <p>2.3 Comparison and Discussion 24</p> <p>2.4 Conclusions 34</p> <p>References 34</p> <p><b>3 Structural Design of High Pressure Flexible Pipes of Different Internal Diameter 35</b></p> <p>3.1 Introduction References 35</p> <p>3.2 Analytical Models 37</p> <p>3.2.1 Cylindrical Layers 37</p> <p>3.2.2 Helix Layers 39</p> <p>3.2.3 The Stiffness Matrix of Pipe as a Whole Helix Layers 40</p> <p>3.2.4 Blasting Failure Criterion 41</p> <p>3.3 FEA Modeling Description 42</p> <p>3.4 Result and Discussion 46</p> <p>3.5 Design 50</p> <p>3.6 Conclusions 54</p> <p>References 55</p> <p><b>4 Tensile Behavior of Flexible Pipes 57</b></p> <p>4.1 Introduction 57</p> <p>4.2 Theoretical Models 58</p> <p>4.2.1 Mechanical Model of Pressure Armor Layer 58</p> <p>4.2.2 Mechanical Behavior of Tensile Armor Layer 61</p> <p>4.2.3 Overall Mechanical Behavior 63</p> <p>4.3 Numerical Model 64</p> <p>4.3.1 Pressure Armor Stiffness 64</p> <p>4.3.2 Full Pipe 69</p> <p>4.4 Comparison and Discussion 71</p> <p>4.5 Parametric Study 77</p> <p>4.6 Conclusions 79</p> <p>References 80</p> <p><b>5 Design Case Study for Deep Water Risers 83</b></p> <p>5.1 Abstract 83</p> <p>5.2 Introduction 83</p> <p>5.3 Cross-Sectional Design 85</p> <p>5.4 Case Study 87</p> <p>5.5 Design Result 94</p> <p>5.6 Finite Elements Analysis 97</p> <p>5.7 Conclusion 100</p> <p>References 101</p> <p><b>6 Unbonded Flexible Pipe Under Bending 103</b></p> <p>6.1 Introduction 103</p> <p>6.2 Helical Layer Within No-Slip Range 104</p> <p>6.2.1 Geometry of Helical Layer 104</p> <p>6.2.2 Bending Stiffness of Helical Layer 108</p> <p>6.3 Helical Layer Within Slip Range 109</p> <p>6.3.1 Critical Curvature 109</p> <p>6.3.2 Axial Force in Helical Wire Within Slip Range 111</p> <p>6.3.3 Axial Force in Helical Wire Within No-Slip Range 112</p> <p>6.3.4 Bending Stiffness of Helical Layer 114</p> <p>References 116</p> <p><b>7 Coiling of Flexible Pipes 117</b></p> <p>7.1 Introduction 117</p> <p>7.2 Local Analysis 120</p> <p>7.2.1 Dimensions and Material Characteristics 120</p> <p>7.2.2 Tension Test 120</p> <p>7.2.3 Bending Test 123</p> <p>7.2.4 Summary 124</p> <p>7.3 Global Analysis 126</p> <p>7.3.1 Modeling 126</p> <p>7.3.2 Interaction and Mesh 127</p> <p>7.3.3 Load and Boundary Conditions 128</p> <p>7.3.4 Discussion of the Results 128</p> <p>7.4 Parametric Study 134</p> <p>7.4.1 Diameter of the Coiling Drum 134</p> <p>7.4.2 Sinking Distance of the Coiling Drum 135</p> <p>7.4.3 Reeling Length 138</p> <p>7.4.4 The Location of the Bearing Plate 139</p> <p>7.5 Conclusions 142</p> <p>References 143</p> <p><b>Part 2: Riser Engineering 145</b></p> <p><b>8 Flexible Risers and Flowlines 147</b></p> <p>8.1 Introduction 147</p> <p>8.2 Flexible Pipe Cross-Section 147</p> <p>8.2.1 Carcass 149</p> <p>8.2.2 Internal Polymer Sheath 150</p> <p>8.2.3 Pressure Armor 150</p> <p>8.2.4 Tensile Armor 151</p> <p>8.2.5 External Polymer Sheath 151</p> <p>8.2.6 Other Layers and Configurations 152</p> <p>8.3 End Fitting and Annulus Venting Design 152</p> <p>8.3.1 End Fitting Design and Top Stiffener (or Bellmouth) 152</p> <p>8.3.2 Annulus Venting System 153</p> <p>8.4 Flexible Riser Design 154</p> <p>8.4.1 Design Analysis 154</p> <p>8.4.2 Riser System Interface Design 155</p> <p>8.4.3 Current Design Limitations 156</p> <p>References 158</p> <p><b>9 Lazy-Wave Static Analysis 159</b></p> <p>9.1 Introduction 159</p> <p>9.2 Fundamental Assumptions 162</p> <p>9.3 Configuration Calculation 162</p> <p>9.3.1 Cable Segment 163</p> <p>9.3.1.1 Hang-Off Section 163</p> <p>9.3.1.2 Buoyancy Section 166</p> <p>9.3.1.3 Decline Section 166</p> <p>9.3.2 Boundary-Layer Segment 167</p> <p>9.3.3 Touchdown Segment 168</p> <p>9.3.4 Boundary Conditions 170</p> <p>9.4 Numerical Solution 171</p> <p>9.5 Finite Element Model 174</p> <p>9.5.1 Environment 175</p> <p>9.5.2 Riser 175</p> <p>9.5.3 Boundary Conditions 175</p> <p>9.6 Comparison and Discussion 175</p> <p>9.7 Parameter Analysis 180</p> <p>9.7.1 Effect of Seabed Stiffness 180</p> <p>9.7.2 Effect of Hang-Off Inclination Angle 182</p> <p>9.7.3 Effect of Buoyancy Section Length 185</p> <p>9.8 Conclusions 187</p> <p>References 188</p> <p><b>10 Steep-Wave Static Configuration 189</b></p> <p>10.1 Introduction 189</p> <p>10.2 Configuration Calculation 190</p> <p>10.2.1 Touch-Down Segment 191</p> <p>10.2.2 Buoyancy Segment 194</p> <p>10.2.3 Hang-Off Segment 195</p> <p>10.2.4 Boundary Conditions 195</p> <p>10.3 Numerical Solution 196</p> <p>10.4 Comparison and Discussion 198</p> <p>10.5 Parametric Analysis 203</p> <p>10.5.1 Effect of Buoyancy Segment’s Equivalent Outer Diameter 203</p> <p>10.5.2 Effect of Buoyancy Segment Length 205</p> <p>10.5.3 Effect of Buoyancy Segment Location 207</p> <p>10.5.4 Effect of Current Velocity 209</p> <p>10.6 Conclusions 212</p> <p>References 212</p> <p>Contents ix</p> <p><b>11 3D Rod Theory for Static and Dynamic Analysis 213</b></p> <p>11.1 Introduction 213</p> <p>11.2 Nomenclature 215</p> <p>11.3 Mathematical Model 216</p> <p>11.3.1 Governing Equations 216</p> <p>11.3.2 Bending Hysteretic Behavior 220</p> <p>11.3.3 Bend Stiffener Constraint 222</p> <p>11.3.4 Pipe-Soil Interaction 224</p> <p>11.4 Case Study 225</p> <p>11.5 Results and Discussion 227</p> <p>11.5.1 Static Analysis 227</p> <p>11.5.2 Dynamic Analysis 231</p> <p>11.5.2.1 Top-End Region 231</p> <p>11.5.2.2 Touchdown Zone 233</p> <p>11.5.3 Effect of Bend Stiffener Constraint 236</p> <p>11.5.4 Effect of Bending Hysteretic Behavior 238</p> <p>11.5.5 Effect of Top Angle Constraint 240</p> <p>11.6 Conclusions 242</p> <p>References 243</p> <p><b>12 Dynamic Analysis of the Cable-Body of the Deep Underwater Towed System 247</b></p> <p>12.1 Introduction 247</p> <p>12.2 Establishment of Towed System Dynamic Model 248</p> <p>12.3 Numerical Simulation and Analysis of Calculation Results 251</p> <p>12.3.1 The Effect of Different Turning Radius 252</p> <p>12.3.2 The Effect of Different Turning Speeds 253</p> <p>12.3.3 Dynamic Analysis of the Towed System with the Change of the Parameters of the Cable 254</p> <p>12.3.4 The Effect of the Diameters of the Towed Cable 257</p> <p>12.3.5 The Effect of the Drag Coefficients of the Towed Cable 257</p> <p>12.3.6 The Effect of the Added Mass Coefficient of the Towed Cable 261</p> <p>12.4 Conclusions 263</p> <p>Acknowledgments 264</p> <p>References 264</p> <p><b>13 Dynamic Analysis of Umbilical Cable Under Interference 267</b></p> <p>13.1 Introduction 267</p> <p>13.2 Dynamic Model of Umbilical Cable 269</p> <p>13.2.1 Establishment of Mathematical Model 269</p> <p>13.2.2 The Discrete Numerical Method for Solving the Lumped Mass Method 271</p> <p>13.2.3 Calculation of the Clashing Force of Umbilical Cable 277</p> <p>13.3 The Establishment of Dynamic Simulation Model in OrcaFlex 279</p> <p>13.3.1 The Equivalent Calculation of the Stiffness of the Umbilical Cable 279</p> <p>13.3.2 RAO of the Platform 281</p> <p>13.3.3 The Choice of Wave Theory 281</p> <p>13.3.4 Establishment of Model in OrcaFlex 282</p> <p>13.4 The Calculation Results 283</p> <p>13.4.1 The Clashing Force of Interference 283</p> <p>13.4.2 The Variation of the Effective Tension Under Interference 285</p> <p>13.4.3 The Variation of Bending Under Interference 287</p> <p>13.5 Conclusion 291</p> <p>References 294</p> <p><b>14 Fatigue Analysis of Flexible Riser 295</b></p> <p>14.1 Introduction 295</p> <p>14.2 Fatigue Failure Mode of Flexible Riser 296</p> <p>14.3 Global Model of Flexible Risers 297</p> <p>14.3.1 Pipe Element 297</p> <p>14.3.2 Bending Stiffener 298</p> <p>14.3.3 Sea Condition 299</p> <p>14.3.4 Platform Motion Response 300</p> <p>14.3.5 Time Domain Simulation Analysis 301</p> <p>14.4 Failure Mode and Design Criteria 302</p> <p>14.4.1 Axisymmetric Load Model 302</p> <p>14.4.2 Bending Load Model 303</p> <p>14.5 Calculation Method of Fatigue Life of Flexible Riser 305</p> <p>14.5.1 Rainflow Counting Method 305</p> <p>14.5.2 S-N Curve 305</p> <p>14.5.3 Miner’s Linear Cumulative Damage Theory 307</p> <p>14.5.4 Modification of Average Stress on Fatigue Damage 308</p> <p>14.6 Example of Fatigue Life Analysis of Flexible Riser 309</p> <p>References 314</p> <p><b>15 Steel Tube Umbilical and Control Systems 317</b></p> <p>15.1 Introduction 317</p> <p>15.1.1 General 317</p> <p>15.1.2 Feasibility Study 318</p> <p>15.1.3 Detailed Design and Installation 319</p> <p>15.1.4 Qualification Tests 320</p> <p>15.2 Control Systems 320</p> <p>15.2.1 General 320</p> <p>15.2.2 Control Systems 321</p> <p>15.2.3 Elements of Control System 322</p> <p>15.2.4 Umbilical Technological Challenges and Solutions 323</p> <p>15.3 Cross-Sectional Design of the Umbilical 326</p> <p>15.4 Steel Tube Design Capacity Verification 327</p> <p>15.4.1 Pressure Containment 328</p> <p>15.4.2 Allowable Bending Radius 328</p> <p>15.5 Extreme Wave Analysis 329</p> <p>15.6 Manufacturing Fatigue Analysis 330</p> <p>15.6.1 Accumulated Plastic Strain 330</p> <p>15.6.2 Low Cycle Fatigue 331</p> <p>15.7 In-Place Fatigue Analysis 331</p> <p>15.7.1 Selection of Sea State Data From Wave Scatter Diagram 332</p> <p>15.7.2 Analysis of Finite Element Static Model 332</p> <p>15.8 Installation Analysis 332</p> <p>15.9 Required On-Seabed Length for Stability 333</p> <p>References 334</p> <p><b>16 Stress and Fatigue of Umbilicals 337</b></p> <p>16.1 Introduction 337</p> <p>16.2 STU Fatigue Models 338</p> <p>16.2.1 Simplified Model 339</p> <p>16.2.1.1 Axial and Bending Stresses 339</p> <p>16.2.1.2 Friction Stress 340</p> <p>16.2.1.3 Simplified Approach: Combining Stresses 342</p> <p>16.2.1.4 Simplified (Combining Stresses) Fatigue Damage 342</p> <p>16.2.1.5 Simplified Model Assumptions 343</p> <p>16.2.2 Enhanced Non-Linear Time Domain Fatigue Model 343</p> <p>16.2.2.1 Friction Stresses 344</p> <p>16.2.2.2 Effect of Multiple Tube Layers 344</p> <p>16.2.2.3 Combined Friction Stresses 345</p> <p>16.2.2.4 Axial and Bending Stresses 345</p> <p>16.2.2.5 Combining Stresses 346</p> <p>16.2.2.6 Fatigue Life 346</p> <p>16.2.2.7 Benefits of Enhanced Non-Linear Time Domain Fatigue Model 347</p> <p>16.3 Worked Example 348</p> <p>16.3.1 Time Domain vs. Simplified Approaches 350</p> <p>16.3.2 Effect of Friction on STU Fatigue 351</p> <p>16.3.2.1 Influence of High Tube Friction on Umbilical Fatigue 352</p> <p>16.3.2.2 Influence of Low Tube Friction on Umbilical Fatigue 352</p> <p>16.3.2.3 Influence of Metal-to-Metal Friction vs. Metal-to-Plastic Contact on Umbilical Fatigue 352</p> <p>16.3.3 Effect of Increasing Water Depth 353</p> <p>16.3.4 Effect of Increasing the Tube Layer Radius 354</p> <p>16.4 Conclusions 355</p> <p>16.5 Recommendations 356</p> <p>References 357</p> <p><b>17 Cross-Sectional Stiffness for Umbilicals 359</b></p> <p>17.1 Introduction 359</p> <p>17.2 Theoretical Model of Umbilicals 361</p> <p>17.3 Bending Stiffness of Umbilicals 362</p> <p>17.4 Tensile Stiffness of Umbilicals 366</p> <p>17.5 Torsional Stiffness of Umbilicals 368</p> <p>17.6 Ultimate Capacity of Umbilicals 368</p> <p>17.6.1 Minimum Bending Curvature 368</p> <p>17.6.2 Minimum Tensile Load 369</p> <p>17.6.3 Tensile Capacity Curve 369</p> <p>References 372</p> <p><b>18 Umbilical Cross-Section Design 375</b></p> <p>18.1 Introduction 375</p> <p>18.1.1 General 375</p> <p>18.1.2 Sectional Composition of the Umbilical Cable 375</p> <p>18.1.3 Umbilical Cable Structure Features 376</p> <p>18.2 Umbilicals Cross-Section Design Overview 377</p> <p>18.2.1 Umbilical Cross-Section Design Flowchart 377</p> <p>18.2.2 Load Analysis 378</p> <p>18.3 Umbilical Cable Cross-Section Design 380</p> <p>18.3.1 Umbilical Cable Cross-Section Layout Design 380</p> <p>18.3.2 Tensile Performance Design 381</p> <p>18.3.3 Bending Performance Design 382</p> <p>References 384</p> <p><b>Part 3: Fiber Glass Reinforced Deep Water Risers 385</b></p> <p><b>19 Collapse Strength of Fiber Glass Reinforced Riser 387</b></p> <p>19.1 Introduction 387</p> <p>19.2 External Pressure Test 388</p> <p>19.2.1 Testing Specimen 388</p> <p>19.2.2 Testing System 389</p> <p>19.2.3 Testing Results 389</p> <p>19.3 Theoretical Analysis 390</p> <p>19.3.1 Fundamental Assumptions 390</p> <p>19.3.2 Constitutive Model of Materials 391</p> <p>19.3.3 Establish the Equations of Motion 393</p> <p>19.3.4 Establish Virtual Work Equations 394</p> <p>19.4 Numerical Analysis 394</p> <p>19.5 Finite Element Analysis 395</p> <p>19.5.1 Establish the Finite Element Model 396</p> <p>19.5.2 The Results of the Finite Element Analysis 397</p> <p>19.6 Conclusion 401</p> <p>References 402</p> <p><b>20 Burst Strength of Fiber Glass Reinforced Riser 405</b></p> <p>20.1 Introduction 405</p> <p>20.2 Experiment 406</p> <p>20.2.1 Dimensions and Material Properties of FGRFP 406</p> <p>20.2.2 Experiment Device 407</p> <p>20.2.3 Experiment Results 407</p> <p>20.3 Numerical Simulations 407</p> <p>20.3.1 Mesh and Interaction 407</p> <p>20.3.2 Load and Boundary Conditions 408</p> <p>20.3.3 Numerical Results 409</p> <p>20.4 Analytical Solution 409</p> <p>20.4.1 Basic Assumptions 409</p> <p>20.4.2 Stress Analysis 411</p> <p>20.4.3 Boundary Condition 414</p> <p>20.5 Results and Discussion 416</p> <p>20.6 Parametric Analysis 417</p> <p>20.6.1 Winding Angle of Fiber Glass 417</p> <p>20.6.2 Diameter-Thickness Ratio 418</p> <p>20.7 Conclusions 419</p> <p>References 419</p> <p><b>21 Structural Analysis of Fiberglass Reinforced Bonded Flexible Pipe Subjected to Tension 421</b></p> <p>21.1 Introduction 421</p> <p>21.2 Experiment 423</p> <p>21.2.1 Basic Assumptions 423</p> <p>21.2.2 Material Characteristics 425</p> <p>21.2.3 Experimental Results 426</p> <p>21.3 Theoretical Solution 427</p> <p>21.3.1 Basic Assumptions 429</p> <p>21.3.2 Cross-Section Simplification 429</p> <p>21.3.3 Fiber Deformation 430</p> <p>21.3.4 Cross-Section Deformation 431</p> <p>21.3.5 Equilibrium Equations 434</p> <p>21.4 Finite Element Model 434</p> <p>21.5 Comparison and Discussion 436</p> <p>21.5.1 Tension-Extension Relation 436</p> <p>21.5.2 Cross-Section Deformation 437</p> <p>21.5.3 Fiberglass Stress 439</p> <p>21.5.4 Contribution of Each Material 439</p> <p>21.5.5 Summary 440</p> <p>21.6 Parametric Study 442</p> <p>21.6.1 Winding Angle 442</p> <p>21.6.2 Fiberglass Amount 443</p> <p>21.6.3 Diameter-Thickness Ratio 444</p> <p>21.7 Conclusions 445</p> <p>Acknowledgement 446</p> <p>References 446</p> <p><b>22 Fiberglass Reinforced Flexible Pipes Under Bending 449</b></p> <p>22.1 Introduction 449</p> <p>22.2 Experiment 451</p> <p>22.2.1 Experimental Facility 451</p> <p>22.2.2 Specimen 453</p> <p>22.2.3 Experiment Process 453</p> <p>22.2.4 Experimental Results 455</p> <p>22.3 Analytical Solution 457</p> <p>22.3.1 Fundamental Assumption 457</p> <p>22.3.2 Kinematic Equation 457</p> <p>22.3.3 Material Simplification 459</p> <p>22.3.4 Constitutive Model 462</p> <p>22.3.5 Principle of Virtual Work 464</p> <p>22.3.6 Algorithm of Analytical Solutions 464</p> <p>22.4 Finite Element Method 465</p> <p>22.5 Result and Conclusion 466</p> <p>22.6 Parametric Analysis 469</p> <p>22.6.1 <i>D/t </i>Ratio 469</p> <p>22.6.2 Initial Ovality 470</p> <p>22.7 Conclusions 472</p> <p>References 473</p> <p><b>23 Fiberglass Reinforced Flexible Pipes Under Torsion 475</b></p> <p>23.1 Introduction 475</p> <p>23.2 Experiments 477</p> <p>23.3 Experimental Results 478</p> <p>23.4 Analytical Solution 481</p> <p>23.4.1 Coordinate Systems 481</p> <p>23.4.2 Elastic Constants of Reinforced Layers (<i>k </i>= 2, 3 … (<i>n </i>− 1)) 483</p> <p>23.4.3 Reinforced Layers Stiffness Matrix <i>k </i>= 2, 3...(<i>n </i>– 1) 484</p> <p>23.4.4 Inner Layer and Outer Layer Stiffness Matrix (k = 1, n) 486</p> <p>23.4.5 Stress and Deformation Analysis 487</p> <p>23.4.6 Boundary Conditions 491</p> <p>23.4.7 Interface Conditions 492</p> <p>23.4.8 Geometric Nonlinearity 493</p> <p>23.5 Numerical Simulations 494</p> <p>23.6 Results and Discussions 496</p> <p>23.7 Parametric Analysis 498</p> <p>23.7.1 Effect of Winding Angle 498</p> <p>23.7.2 Effect of Thickness of Reinforced Layers 498</p> <p>23.8 Conclusions 499</p> <p>Acknowledgments 500</p> <p>References 501</p> <p><b>24 Cross-Section Design of Fiberglass Reinforced Riser 503</b></p> <p>24.1 Introduction 503</p> <p>24.2 Nomenclature 503</p> <p>24.3 Basic Structure of Pipe 505</p> <p>24.3.1 Overall Structure 505</p> <p>24.3.2 Material 506</p> <p>24.4 Strength Failure Design Criteria 506</p> <p>24.4.1 Burst Pressure 506</p> <p>24.4.2 Burst Pressure Under Internal Pressure Bending Moment 508</p> <p>24.4.3 Yield Tension 508</p> <p>24.5 Failure Criteria for Instability Design 510</p> <p>24.5.1 Minimum Bending Radius 510</p> <p>24.5.2 External Pressure Instability Pressure 510</p> <p>24.6 Design Criteria for Leakage Failure 511</p> <p>References 511</p> <p><b>25 Fatigue Life Assessment of Fiberglass Reinforced Flexible Pipes 513</b></p> <p>25.1 Introduction 513</p> <p>25.2 Global Analysis 515</p> <p>25.3 Rain Flow Method 517</p> <p>25.4 Local Analysis 519</p> <p>25.5 Modeling 519</p> <p>25.6 Result Discussion 520</p> <p>25.7 Sensitivity Analysis 524</p> <p>25.8 Fatigue Life Assessment 527</p> <p>25.9 Conclusion 528</p> <p>References 529</p> <p><b>Part 4: Ancillary Equipments for Flexibles and Umbilicals 531</b></p> <p><b>26 Typical Connector Design for Risers 533</b></p> <p>26.1 Introduction 533</p> <p>26.2 Carcass 534</p> <p>26.3 Typical Connector 535</p> <p>26.4 Seal System 536</p> <p>26.5 Termination of the Carcass 537</p> <p>26.6 Smooth Bore Pipe 539</p> <p>26.7 Rough Bore Pipe 540</p> <p>26.8 Discussion 542</p> <p>26.9 Conclusions 544</p> <p>References 545</p> <p><b>27 Bend Stiffener and Restrictor Design 547</b></p> <p>27.1 Introduction 547</p> <p>27.2 Response Model 548</p> <p>27.3 Extreme Load Description 549</p> <p>27.4 General Optimization Scheme 550</p> <p>27.5 Application Example 552</p> <p>27.6 Non-Dimensional Bend Stiffener Design 553</p> <p>27.7 Alternative Non-Dimensional Parameters 556</p> <p>27.8 Conclusions 558</p> <p>References 558</p> <p><b>28 End Termination Design for Umbilicals 561</b></p> <p>28.1 Introduction 561</p> <p>28.2 Umbilical Termination Assembly 561</p> <p>28.2.1 General 561</p> <p>28.2.2 UTA Design 562</p> <p>28.2.3 UTA Structural Design Basis 565</p> <p>28.3 Subsea Termination Interface 566</p> <p>References 568</p> <p><b>29 Mechanical Properties of Glass Fibre Reinforced Pipeline During the Laying Process 569</b></p> <p>29.1 Introduction 569</p> <p>29.2 Theoretical Analysis 570</p> <p>29.2.1 Wave Load 570</p> <p>29.2.2 Motion Response of the Vessel 572</p> <p>29.2.3 Dynamic Numerical Solution 573</p> <p>29.3 Static Analysis 575</p> <p>29.4 Dynamic Characteristic Analysis 579</p> <p>29.4.1 Influence of the Wave Direction 579</p> <p>29.4.2 Influencing of Different Lay Angle 582</p> <p>29.4.3 Influencing Submerged Weight 584</p> <p>29.5 Conclusions 584</p> <p>References 586</p> <p>Index 589</p>
<p><b>Yong Bai, PhD,</b> is the president of Offshore Pipelines & Risers Inc. in Houston, and is a professor and the director of the Offshore Engineering Research Center at Zhejiang University. He has previously taught at Stavanger University in Norway where he was a professor of offshore structures and has also worked with ABS as manager of the Offshore Technology Department, DNV as the JIP project manager and has also worked for Shell International E & P, JP Kenny, and MCS, where he was vice president of engineering. He is the co-author of two books on pipelines and over 100 papers on the design and installation of subsea pipelines and risers.
<p><b>This second volume in the Advances in Pipes and Pipelines series focuses on flexible pipelines, risers, and umbilicals, offering the engineer the most up-to-date and comprehensive coverage of pipeline engineering available today.</b> <p>The technology, processes, materials, and theories surrounding pipeline construction, application, and troubleshooting are constantly changing, and this new series, "Advances in Pipes and Pipelines", has been created to meet the needs of engineers and scientists to keep them up to date and informed of all of these advances. This second volume in the series focuses on flexible pipelines, risers, and umbilicals, offering the engineer the most thorough coverage of the state-of-the-art available. The author of this work has written numerous books and papers on these subjects and is one of the most influential authors on flexible pipes in the world, contributing much of the literature on this subject to the industry. This new volume is a presentation of some of the most cutting-edge technological advances in technical publishing. <p>The first volume in this series, published by Wiley-Scrivener, is Flexible Pipes, available at www.wiley.com. Laying the foundation for the series, it is a groundbreaking work, written by some of the world's foremost authorities on pipes and pipelines. Continuing in this series, the editor has compiled the second volume, equally as groundbreaking, expanding the scope to pipelines, risers, and umbilicals. <p>This is the most comprehensive and in-depth series on pipelines, covering not just the various materials and their aspects that make them different, but every process that goes into their installation, operation, and design. This is the future of pipelines, and it is an important breakthrough. A must-have for the veteran engineer and student alike, this volume is an important new advancement in the energy industry, a strong link in the chain of the world's energy production. <p><b><i>Deepwater Flexible Risers and Pipelines:</i></b> <ul> <li>Following up on the first volume in the series, introduces a new approach to the design, construction, and installation of flexible pipes, adding risers and umbilicals</li> <li>Presents both the theory and practical applications of flexible pipes with a view toward its use in pipelines and other industrial settings</li> <li>Describes the new materials, technologies, and practical applications of flexible pipelines, risers, and umbilicals, one of the hottest topics in the oil and gas industry</li> <li>Introduces engineering students to a profound theory for stronger and more efficient designs in pipelines and provides the veteran engineer a valuable reference</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €