Details

Metalorganic Vapor Phase Epitaxy (MOVPE)


Metalorganic Vapor Phase Epitaxy (MOVPE)

Growth, Materials Properties, and Applications
Wiley Series in Materials for Electronic & Optoelectronic Applications 1. Aufl.

von: Stuart Irvine, Peter Capper

143,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 27.08.2019
ISBN/EAN: 9781119313045
Sprache: englisch
Anzahl Seiten: 584

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Systematically discusses the growth method, material properties, and applications for key semiconductor materials</b></p> <p>MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics.</p> <p>Sections in every chapter of <i>Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications</i> cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique.</p> <ul> <li>Covers, in order, the growth method, material properties, and applications for each material</li> <li>Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring</li> <li>Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires</li> <li>Provides topical and wide-ranging coverage from well-known authors in the field</li> <li>Part of the Materials for Electronic and Optoelectronic Applications series </li> </ul> <p><i>Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications</i> is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).</p>
<p>List of Contributors xv</p> <p>Foreword xvii</p> <p>Series Preface xix</p> <p>Preface xxi</p> <p>Safety and Environment Disclaimer xxiii</p> <p><b>1 Introduction to Metalorganic Vapor Phase Epitaxy 1<br /></b><i>S.J.C. Irvine and P. Capper</i></p> <p>1.1 Historical Background of MOVPE 1</p> <p>1.2 Basic Reaction Mechanisms 4</p> <p>1.3 Precursors 8</p> <p>1.4 Types of Reactor Cell 9</p> <p>1.5 Introduction to Applications of MOVPE 11</p> <p>1.5.1 AlN for UV Emitters 11</p> <p>1.5.2 GaAs/AlGaAs VCSELS 11</p> <p>1.5.3 Multijunction Solar Cells 12</p> <p>1.5.4 GaAs and InP Transistors for High‐Frequency Devices 13</p> <p>1.5.5 Infrared Detectors 14</p> <p>1.5.6 Photovoltaic and Thermophotovoltaic Devices 14</p> <p>1.6 Health and Safety Considerations in MOVPE 15</p> <p>1.7 Conclusions 16</p> <p>References 16</p> <p><b>2 Fundamental Aspects of MOVPE 19<br /></b><i>G.B. Stringfellow</i></p> <p>2.1 Introduction 19</p> <p>2.2 Thermodynamics 20</p> <p>2.2.1 Thermodynamics of MOVPE Growth 20</p> <p>2.2.2 Solid Composition 24</p> <p>2.2.3 Phase Separation 29</p> <p>2.2.4 Ordering 31</p> <p>2.3 Kinetics 35</p> <p>2.3.1 Mass Transport 35</p> <p>2.3.2 Precursor Pyrolysis 36</p> <p>2.3.3 Control of Solid Composition 37</p> <p>2.4 Surface Processes 40</p> <p>2.4.1 Surface Reconstruction 41</p> <p>2.4.2 Atomic‐Level Surface Processes 42</p> <p>2.4.3 Effects of Surface Processes on Materials Properties 44</p> <p>2.4.4 Surfactants 46</p> <p>2.5 Specific Systems 52</p> <p>2.5.1 AlGaInP 52</p> <p>2.5.2 Group III Nitrides 53</p> <p>2.5.3 Novel Alloys 56</p> <p>2.6 Summary 59</p> <p>References 60</p> <p><b>3 Column III: Phosphides, Arsenides, and Antimonides 71<br /></b><i>H. Hardtdegen and M. Mikulics</i></p> <p>3.1 Introduction 71</p> <p>3.2 Precursors for Column III Phosphides, Arsenides, and Antimonides 73</p> <p>3.3 GaAs‐Based Materials 74</p> <p>3.3.1 (AlGa)As/GaAs Properties and Deposition 74</p> <p>3.3.2 GaInP, (AlGa)InP/GaAs Properties and Deposition 79</p> <p>3.4 InP‐Based Materials 82</p> <p>3.4.1 InP Properties and Deposition 82</p> <p>3.4.2 AlInAs/GaInAs/AlGaInAs Properties and Deposition 83</p> <p>3.4.3 AlInAs/GaInAs/InP Heterostructures 84</p> <p>3.4.4 In<sub><i>x</i></sub>Ga<sub>1–<i>x</i></sub>As<sub><i>y</i></sub>P<sub>1–<i>y </i></sub>Properties and Deposition 84</p> <p>3.5 Column III Antimonides Properties and Deposition 86</p> <p>3.5.1 Deposition of InSb, GaSb, and AlSb 87</p> <p>3.5.2 Deposition of Ternary Column III Alloys (AlGa)Sb and (GaIn)Sb 89</p> <p>3.5.3 Deposition of Ternary Column V Alloys In(AsSb), GaAsSb 89</p> <p>3.5.4 Deposition of Quaternary Alloys 90</p> <p>3.5.5 Epitaxy of Electronic Device Structures 90</p> <p>3.5.6 Epitaxy of Optoelectronic Device Structures 95</p> <p>3.6 In Situ Optical Characterization/Growth Control 100</p> <p>3.7 Conclusions 100</p> <p>References 101</p> <p><b>4 Nitride Semiconductors 109<br /></b><i>A. Dadgar and M. Weyers</i></p> <p>4.1 Introduction 109</p> <p>4.2 Properties of III‐Nitrides 110</p> <p>4.3 Challenges in the Growth of III‐Nitrides 111</p> <p>4.3.1 Lattice and Thermal Mismatch 111</p> <p>4.3.2 Ternary Alloys: Miscibility and Compositional Homogeneity 113</p> <p>4.3.3 Gas‐Phase Prereactions 115</p> <p>4.3.4 Doping of III‐Nitrides 117</p> <p>4.4 Substrates 120</p> <p>4.4.1 Heteroepitaxy on Foreign Substrates 122</p> <p>4.4.2 GaN Growth on Sapphire 125</p> <p>4.4.3 III‐N Growth on SiC 126</p> <p>4.4.4 GaN Growth on Silicon 127</p> <p>4.5 MOVPE Growth Technology 130</p> <p>4.5.1 Precursors 130</p> <p>4.5.2 Reactors and In Situ Monitoring 130</p> <p>4.6 Economic Importance 136</p> <p>4.6.1 Optoelectronic Devices 137</p> <p>4.6.2 Electronic Devices 138</p> <p>4.7 Conclusions 138</p> <p>References 138</p> <p><b>5 Metamorphic Growth and Multijunction III‐V Solar Cells 149<br /></b><i>N.H. Karam, C.M. Fetzer, X.‐Q. Liu, M.A. Steiner, and K.L. Schulte</i></p> <p>5.1 Introduction to MOVPE for Multijunction Solar Cells 149</p> <p>5.1.1 III‐V PV Solar Cell Opportunities and Applications 149</p> <p>5.1.2 Metamorphic Multijunction Solar Cells 151</p> <p>5.1.3 Reactor Technology for Metamorphic Epitaxy 154</p> <p>5.2 Upright Metamorphic Multijunction (UMM) Solar Cells 154</p> <p>5.2.1 Introduction and History of Upright Metamorphic Multijunctions 154</p> <p>5.2.2 MOVPE Growth Considerations of UMM 156</p> <p>5.2.3 Growth and Device Results 158</p> <p>5.2.4 Challenges and Future Outlook 162</p> <p>5.3 Inverted Metamorphic Multijunction (IMM) Solar Cells 162</p> <p>5.3.1 Introduction and History of Inverted Metamorphic Multijunctions 162</p> <p>5.3.2 MOVPE Growth Considerations of IMM 164</p> <p>5.3.3 Growth and Device Results 167</p> <p>5.3.4 Challenges and Future Outlook 169</p> <p>5.4 Conclusions 169</p> <p>References 170</p> <p><b>6 Quantum Dots 175<br /></b><i>E. Hulicius, A. Hospodkov</i><i>á, and M. Z</i><i>íkov</i><i>á</i></p> <p>6.1 General Introduction to the Topic 175</p> <p>6.1.1 Definition and History 175</p> <p>6.1.2 Paradigm of Quantum Dots 176</p> <p>6.1.3 QD Types 176</p> <p>6.2 A<sup>III</sup>B<sup>V</sup> Materials and Structures 178</p> <p>6.2.1 QDs Embedded in the Structure 178</p> <p>6.2.2 Semiconductor Materials for Embedded QDs 180</p> <p>6.3 Growth Procedures 181</p> <p>6.3.1 Comparison of MBE‐ and MOVPE‐Grown QDs 181</p> <p>6.3.2 Growth Parameters 182</p> <p>6.3.3 QD Surrounding Layers 185</p> <p>6.4 In Situ Measurements 193</p> <p>6.4.1 Reflectance Anisotropy Spectroscopy of QD Growth 193</p> <p>6.4.2 Other Supporting In Situ Measurements 197</p> <p>6.5 Structure Characterization 198</p> <p>6.5.1 Optical: Photo‐, Magnetophoto‐, Electro‐luminescence, and Spin Detection 198</p> <p>6.5.2 Microscopies – AFM, TEM, XSTM, BEEM/BEES 200</p> <p>6.5.3 Electrical: Photocurrent, Capacitance Measurements 202</p> <p>6.6 Applications 203</p> <p>6.6.1 QD Lasers, Optical Amplifiers, and LEDs 204</p> <p>6.6.2 QD Detectors, FETs, Photovoltaics, and Memories 205</p> <p>6.7 Summary 208</p> <p>6.8 Future Perspectives 208</p> <p>Acknowledgment 209</p> <p>References 209</p> <p><b>7 III‐V Nanowires and Related Nanostructures: From Nitrides to Antimonides 217<br /></b><i>H.J. Joyce</i></p> <p>7.1 Introduction to Nanowires and Related Nanostructures 217</p> <p>7.2 Geometric and Crystallographic Properties of III‐V Nanowires 219</p> <p>7.2.1 Crystal Phase 219</p> <p>7.2.2 Growth Direction, Morphology, and Side‐Facets 220</p> <p>7.3 Particle‐Assisted MOVPE of Nanowires 222</p> <p>7.3.1 The Phase of the Particle 222</p> <p>7.3.2 The Role of the Particle 224</p> <p>7.3.3 Axial and Radial Growth Modes 226</p> <p>7.3.4 Self‐Assisted Growth 228</p> <p>7.4 Selective‐Area MOVPE of Nanowires and Nanostructures 228</p> <p>7.4.1 The Role of the Mask 229</p> <p>7.4.2 Axial and Radial Growth Modes 230</p> <p>7.5 Alternative Techniques for MOVPE of Nanowires 231</p> <p>7.6 Novel Applications of Nanowires 231</p> <p>7.7 Concluding Remarks 233</p> <p>References 234</p> <p><b>8 Monolithic III/V integration on (001) Si substrate 241<br /></b><i>B. Kunert and K. Volz</i></p> <p>8.1 Introduction 241</p> <p>8.2 III/V‐Si Interface 243</p> <p>8.2.1 Si Surfaces 243</p> <p>8.2.2 Interface Formation in the Presence of Impurities and MO Precursors 247</p> <p>8.2.3 Atomic III/V on Si Interface Structure 249</p> <p>8.2.4 Antiphase Domains 251</p> <p>8.2.5 III/V Growth on Si(001) 252</p> <p>8.3 Heteroepitaxy of Bulk Layers on Si 255</p> <p>8.3.1 Lattice‐Matched Growth on Si 257</p> <p>8.3.2 Metamorphic Growth on Blanket Si 258</p> <p>8.3.3 Selective‐Area Growth (SAG) on Si 264</p> <p>8.4 Conclusions 282</p> <p>References 282</p> <p><b>9 MOVPE Growth of Cadmium Mercury Telluride and Applications 293<br /></b><i>C.D. Maxey, P. Capper, and I.M. Baker</i></p> <p>9.1 Requirement for Epitaxy 293</p> <p>9.2 History 294</p> <p>9.3 Substrate Choices 295</p> <p>9.3.1 Orientation 296</p> <p>9.3.2 Substrate Material 296</p> <p>9.4 Reactor Design 297</p> <p>9.4.1 Process Abatement Systems 298</p> <p>9.5 Process Parameters 299</p> <p>9.6 Metalorganic Sources 299</p> <p>9.7 Uniformity 300</p> <p>9.8 Reproducibility 302</p> <p>9.9 Doping 302</p> <p>9.10 Defects 304</p> <p>9.11 Annealing 307</p> <p>9.12 In Situ Monitoring 308</p> <p>9.13 Background for Applications of MOVPE MCT 308</p> <p>9.13.1 Introduction to Infrared Imaging and Atmospheric Windows 308</p> <p>9.13.2 MCT Infrared Detector Market in the Modern Era 309</p> <p>9.14 Manufacturing Technology for MOVPE Photodiode Arrays 311</p> <p>9.14.1 Mesa Heterojunction Devices (MHJ) 311</p> <p>9.14.2 Wafer‐Scale Processing 312</p> <p>9.15 Advanced MCT Technologies 312</p> <p>9.15.1 Small‐Pixel Technology 313</p> <p>9.15.2 Higher Operating Temperature (HOT) Device Structures 313</p> <p>9.15.3 Two‐Color Array Technology 314</p> <p>9.15.4 Nonequilibrium Device Structures 316</p> <p>9.16 MOVPE MCT for Scientific Applications 316</p> <p>9.16.1 Linear‐Mode Avalanche Photodiode Arrays (LmAPDs) in MOVPE 316</p> <p>9.17 Conclusions and Future Trends for MOVPE MCT Arrays 320</p> <p>Definitions 321</p> <p>References 322</p> <p><b>10 Cadmium Telluride and Related II‐VI Materials 325<br /></b><i>G. Kartopu and S.J.C. Irvine</i></p> <p>10.1 Introduction and Historical Background 325</p> <p>10.2 CdTe Homoepitaxy 327</p> <p>10.3 CdTe Heteroepitaxy 327</p> <p>10.3.1 InSb 327</p> <p>10.3.2 Sapphire 328</p> <p>10.3.3 GaAs 329</p> <p>10.3.4 Silicon 330</p> <p>10.4 Low‐Temperature Growth and Alternative Precursors 330</p> <p>10.5 Photoassisted MOVPE 332</p> <p>10.6 Plasma‐Assisted MOVPE 333</p> <p>10.7 Polycrystalline MOCVD 333</p> <p>10.8 In Situ Monitoring of CdTe 334</p> <p>10.8.1 Mechanisms for Laser Reflectance (LR) Monitoring 335</p> <p>10.9 MOCVD of CdTe for Planar Solar Cells 337</p> <p>10.9.1 CdS and CdZnS Window Layers 338</p> <p>10.9.2 CdTe Absorber Layer 338</p> <p>10.9.3 CdCl<sub>2</sub> Treatment Layer 342</p> <p>10.9.4 Photovoltaic Planar Devices 343</p> <p>10.10 Core‐Shell Nanowire Photovoltaic Devices 345</p> <p>10.11 Inline MOCVD for Scaling of CdTe 347</p> <p>10.12 MOCVD of CdTe for Radiation Detectors 350</p> <p>References 351</p> <p><b>11 ZnO and Related Materials 355<br /></b><i>V. Muñoz‐Sanjos</i><i>é and S.J.C. Irvine</i></p> <p>11.1 Introduction 355</p> <p>11.2 Sources for the MOCVD Growth of ZnO and Related Materials 356</p> <p>11.2.1 Metalorganic Zinc Precursors 356</p> <p>11.2.2 Metalorganic Cadmium Precursors 360</p> <p>11.2.3 Metalorganic Magnesium Precursors 360</p> <p>11.2.4 Precursors for Oxygen 361</p> <p>11.2.5 Precursors for Doping 363</p> <p>11.3 Substrates for the MOCVD Growth of ZnO and Related Materials 364</p> <p>11.3.1 ZnO Single Crystals and ZnO Templates as Substrates 365</p> <p>11.3.2 Sapphire (Al<sub>2</sub>O<sub>3</sub>) 367</p> <p>11.3.3 Silicon 369</p> <p>11.3.4 Glass Substrates 372</p> <p>11.4 Some Techniques for the MOCVD Growth of ZnO and Related Materials 373</p> <p>11.4.1 Atmospheric and Low‐Pressure Conditions in Conventional MOCVD Systems 374</p> <p>11.4.2 MOCVD‐Assisted Processes 376</p> <p>11.5 Crystal Growth of ZnO and Related Materials 380</p> <p>11.5.1 Crystal Growth by MOCVD of ZnO Layers 380</p> <p>11.5.2 Crystal Growth of ZnO Nanostructures 393</p> <p>11.5.3 Crystal Growth of ZnO‐Related Materials 398</p> <p>11.5.4 Doping of ZnO and Related Materials 400</p> <p>11.6 Conclusions 405</p> <p>Acknowledgments 406</p> <p>References 406</p> <p><b>12 Epitaxial Systems for III‐V and III‐Nitride MOVPE 423<br /></b><i>W. Lundin and R. Talalaev</i></p> <p>12.1 Introduction 423</p> <p>12.2 Typical Engineering Solutions Inside MOVPE Tools 424</p> <p>12.2.1 Gas‐Blending System 424</p> <p>12.2.2 Exhaust System 433</p> <p>12.2.3 Reactors 435</p> <p>12.3 Reactors for MOVPE of III‐V Materials 438</p> <p>12.3.1 General Features of III‐V MOVPE 438</p> <p>12.3.2 From Simple Horizontal Flow to Planetary Reactors 439</p> <p>12.3.3 Close‐Coupled Showerhead (CCS) Reactors 445</p> <p>12.3.4 Rotating‐Disk Reactors 447</p> <p>12.4 Reactors for MOVPE of III‐N Materials 451</p> <p>12.4.1 Principal Differences between MOVPE of Classical III‐Vs and III‐Ns 451</p> <p>12.4.2 Rotating‐Disk Reactors 454</p> <p>12.4.3 Planetary Reactors 455</p> <p>12.4.4 CCS Reactors 458</p> <p>12.4.5 Horizontal Flow Reactors for III‐N MOVPE 459</p> <p>12.5 Twenty‐Five Years of Commercially Available III‐N MOVPE Reactor Evolution 462</p> <p>References 464</p> <p><b>13 Ultrapure Metal‐Organic Precursors for MOVPE 467<br /></b><i>D.V. Shenai‐Khatkhate</i></p> <p>13.1 Introduction 467</p> <p>13.1.1 MOVPE Precursor Classes and Impurities 468</p> <p>13.2 Stringent Requirements for Suitable MOVPE Precursors 472</p> <p>13.3 Synthesis and Purification Strategies for Ultrapure MOVPE Precursors 472</p> <p>13.3.1 Synthetic Strategies for Ultrapure MOVPE Precursors 472</p> <p>13.3.2 Purification Strategies for MOVPE Precursors 476</p> <p>13.4 MOVPE Precursors for III‐V Compound Semiconductors 483</p> <p>13.4.1 Group III MOVPE Precursors 483</p> <p>13.4.2 Group V MOVPE Precursors 488</p> <p>13.5 MOVPE Precursors for II‐VI Compound Semiconductors 493</p> <p>13.5.1 Group II MOVPE Precursors 493</p> <p>13.5.2 Group VI MOVPE Precursors 496</p> <p>13.6 MOVPE Dopants for Compound Semiconductors 499</p> <p>13.7 Environment, Health, and Safety (EHS) Aspects of MOVPE Precursors 500</p> <p>13.7.1 General Aspects and Considerations 500</p> <p>13.7.2 Employee and Environment Exposure Aspects 501</p> <p>13.7.3 Employee and Workplace Exposure Limits 502</p> <p>13.8 Conclusions and Future Trends 502</p> <p>Acknowledgments 503</p> <p>References 503</p> <p><b>14 Future Aspects of MOCVD Technology for Epitaxial Growth of Semiconductors 507<br /></b><i>T. Detchprohm, J.‐H. Ryou, X. Li, and R.D. Dupuis</i></p> <p>14.1 Introduction – Looking Back 507</p> <p>14.2 Future Equipment Development 510</p> <p>14.2.1 Production MOCVD 510</p> <p>14.2.2 R&D MOCVD 511</p> <p>14.2.3 MOCVD for Ultrawide‐Bandgap III‐Nitrides 512</p> <p>14.2.4 MOCVD for Emerging Materials 513</p> <p>14.2.5 Democratization of MOCVD 514</p> <p>14.3 Future Applications for MOCVD Research in Semiconductor Materials 515</p> <p>14.3.1 Heteroepitaxy 515</p> <p>14.3.2 Nanostructural Materials 527</p> <p>14.3.3 Poly, Amorphous, and Other Materials 532</p> <p>14.4 Past, Present, and Future Commercial Applications 535</p> <p>14.4.1 LEDs 535</p> <p>14.4.2 Lasers 536</p> <p>14.4.3 OEICs 536</p> <p>14.4.4 High‐Speed Electronics 536</p> <p>14.4.5 High‐Power Electronics 537</p> <p>14.4.6 Solar Cells 537</p> <p>14.4.7 Detectors 538</p> <p>14.5 Summary and Conclusions 538</p> <p>Acknowledgments 539</p> <p>References 539</p> <p>Index 549</p>
<p><b>Series Editors</b></br> <b>Arthur Willoughby</b> University of Southampton, Southampton, UK</br> <b>Peter Capper</b> Ex???Leonardo MW Ltd, Southampton, UK</br> <b>Safa Kasap</b> University of Saskatchewan, Saskatoon, Canada <p><b>Edited by</b></br> <b>Stuart Irvine</b>, PhD, DSc <i>College of Engineering, Swansea University, UK</i></br> <b>Peter Capper</b>, PhD <i>Ex-Leonardo MW Ltd, Southampton, UK</i>
<p><b>Metalorganic Vapor Phase Epitaxy (MOVPE)</b></br> Growth, Materials Properties, and Applications <p>Systematically discusses the growth method, material properties, and applications for key semiconductor materials <p>MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. <p>Sections in every chapter of <i>Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties, and Applications</i> cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. <ul> <li>Covers, in order, the growth method, material properties, and applications for each material</li> <li>Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring</li> <li>Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires</li> <li>Provides topical and wide-ranging coverage from well-known authors in the field</li> <li>Part of the Materials for Electronic & Optoelectronic Applications series</li> </ul> <p><i>Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties, and Applications</i> is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €