Details

Advanced Engineering Thermodynamics


Advanced Engineering Thermodynamics


4. Aufl.

von: Adrian Bejan

128,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 31.08.2016
ISBN/EAN: 9781119281030
Sprache: englisch
Anzahl Seiten: 800

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>An advanced, practical approach to the first and second laws of thermodynamics</b> <p><i>Advanced Engineering Thermodynamics</i> bridges the gap between engineering applications and the first and second laws of thermodynamics. Going beyond the basic coverage offered by most textbooks, this authoritative treatment delves into the advanced topics of energy and work as they relate to various engineering fields. This practical approach describes real-world applications of thermodynamics concepts, including solar energy, refrigeration, air conditioning, thermofluid design, chemical design, constructal design, and more. This new fourth edition has been updated and expanded to include current developments in energy storage, distributed energy systems, entropy minimization, and industrial applications, linking new technologies in sustainability to fundamental thermodynamics concepts. Worked problems have been added to help students follow the thought processes behind various applications, and additional homework problems give them the opportunity to gauge their knowledge. <p>The growing demand for sustainability and energy efficiency has shined a spotlight on the real-world applications of thermodynamics. This book helps future engineers make the fundamental connections, and develop a clear understanding of this complex subject. <ul> <li>Delve deeper into the engineering applications of thermodynamics</li> <li>Work problems directly applicable to engineering fields</li> <li>Integrate thermodynamics concepts into sustainability design and policy</li> <li>Understand the thermodynamics of emerging energy technologies</li> </ul> <p>Condensed introductory chapters allow students to quickly review the fundamentals before diving right into practical applications. Designed expressly for engineering students, this book offers a clear, targeted treatment of thermodynamics topics with detailed discussion and authoritative guidance toward even the most complex concepts. <i>Advanced Engineering Thermodynamics</i> is the definitive modern treatment of energy and work for today's newest engineers.
<p>Preface to the First Edition xvii</p> <p>Preface to the Second Edition xxi</p> <p>Preface to The Third Edition xxv</p> <p>Preface xxix</p> <p>Acknowledgments xxxvii</p> <p><b>1 The First Law 1</b></p> <p>1.1 Terminology 1</p> <p>1.2 Closed Systems 4</p> <p>1.3 Work Transfer 7</p> <p>1.4 Heat Transfer 12</p> <p>1.5 Energy Change 16</p> <p>1.6 Open Systems 18</p> <p>1.7 History 23</p> <p>References 31</p> <p>Problems 33</p> <p><b>2 The Second Law 39</b></p> <p>2.1 Closed Systems 39</p> <p>2.1.1 Cycle in Contact with One Temperature Reservoir 39</p> <p>2.1.2 Cycle in Contact with Two Temperature Reservoirs 41</p> <p>2.1.3 Cycle in Contact with Any Number of Temperature Reservoirs 49</p> <p>2.1.4 Process in Contact with Any Number of Temperature Reservoirs 51</p> <p>2.2 Open Systems 54</p> <p>2.3 Local Equilibrium 56</p> <p>2.4 Entropy Maximum and Energy Minimum 57</p> <p>2.5 Carathéodory’s Two Axioms 62</p> <p>2.6 A Heat Transfer Man’s Two Axioms 71</p> <p>2.7 History 77</p> <p>References 78</p> <p>Problems 80</p> <p><b>3 Entropy Generation, Or Exergy Destruction 95</b></p> <p>3.1 Lost Available Work 96</p> <p>3.2 Cycles 102</p> <p>3.2.1 Heat Engine Cycles 103</p> <p>3.2.2 Refrigeration Cycles 104</p> <p>3.2.3 Heat Pump Cycles 107</p> <p>3.3 Nonflow Processes 109</p> <p>3.4 Steady-Flow Processes 113</p> <p>3.5 Mechanisms of Entropy Generation 119</p> <p>3.5.1 Heat Transfer across a Temperature Difference 119</p> <p>3.5.2 Flow with Friction 122</p> <p>3.5.3 Mixing 124</p> <p>3.6 Entropy Generation Minimization 126</p> <p>3.6.1 The Method 126</p> <p>3.6.2 Tree-Shaped Fluid Flow 127</p> <p>3.6.3 Entropy Generation Number 130</p> <p>References 132</p> <p>Problems 133</p> <p><b>4 Single-Phase Systems 140</b></p> <p>4.1 Simple System 140</p> <p>4.2 Equilibrium Conditions 141</p> <p>4.3 The Fundamental Relation 146</p> <p>4.3.1 Energy Representation 147</p> <p>4.3.2 Entropy Representation 148</p> <p>4.3.3 Extensive Properties versus Intensive Properties 149</p> <p>4.3.4 The Euler Equation 150</p> <p>4.3.5 The Gibbs–Duhem Relation 151</p> <p>4.4 Legendre Transforms 154</p> <p>4.5 Relations between Thermodynamic Properties 163</p> <p>4.5.1 Maxwell’s Relations 163</p> <p>4.5.2 Relations Measured during Special Processes 166</p> <p>4.5.3 Bridgman’s Table 173</p> <p>4.5.4 Jacobians in Thermodynamics 176</p> <p>4.6 Partial Molal Properties 179</p> <p>4.7 Ideal Gas Mixtures 183</p> <p>4.8 Real Gas Mixtures 186</p> <p>References 189</p> <p>Problems 190</p> <p><b>5 Exergy Analysis 195</b></p> <p>5.1 Nonflow Systems 195</p> <p>5.2 Flow Systems 198</p> <p>5.3 Generalized Exergy Analysis 201</p> <p>5.4 Air Conditioning 203</p> <p>5.4.1 Mixtures of Air and Water Vapor 203</p> <p>5.4.2 Total Flow Exergy of Humid Air 205</p> <p>5.4.3 Total Flow Exergy of Liquid Water 207</p> <p>5.4.4 Evaporative Cooling 208</p> <p>References 210</p> <p>Problems 210</p> <p><b>6 Multiphase Systems 213</b></p> <p>6.1 The Energy Minimum Principle 213</p> <p>6.1.1 The Energy Minimum 214</p> <p>6.1.2 The Enthalpy Minimum 215</p> <p>6.1.3 The Helmholtz Free-Energy Minimum 216</p> <p>6.1.4 The Gibbs Free-Energy Minimum 217</p> <p>6.1.5 The Star Diagram 217</p> <p>6.2 The Stability of a Simple System 219</p> <p>6.2.1 Thermal Stability 219</p> <p>6.2.2 Mechanical Stability 221</p> <p>6.2.3 Chemical Stability 222</p> <p>6.3 The Continuity of the Vapor and Liquid States 224</p> <p>6.3.1 The Andrews Diagram and J. Thomson’s Theory 224</p> <p>6.3.2 The van der Waals Equation of State 226</p> <p>6.3.3 Maxwell’s Equal-Area Rule 233</p> <p>6.3.4 The Clapeyron Relation 235</p> <p>6.4 Phase Diagrams 236</p> <p>6.4.1 The Gibbs Phase Rule 236</p> <p>6.4.2 Single-Component Substances 237</p> <p>6.4.3 Two-Component Mixtures 239</p> <p>6.5 Corresponding States 247</p> <p>6.5.1 Compressibility Factor 247</p> <p>6.5.2 Analytical <i>P</i>(<i>v</i>, <i>T</i>) Equations of State 253</p> <p>6.5.3 Calculation of Properties Based on <i>P</i>(<i>v</i>, <i>T</i>) and Specific Heat 257</p> <p>6.5.4 Saturated Liquid and Saturated Vapor States 259</p> <p>6.5.5 Metastable States 261</p> <p>References 264</p> <p>Problems 266</p> <p><b>7 Chemically Reactive Systems 271</b></p> <p>7.1 Equilibrium 271</p> <p>7.1.1 Chemical Reactions 271</p> <p>7.1.2 Affinity 274</p> <p>7.1.3 Le Chatelier–Braun Principle 277</p> <p>7.1.4 Ideal Gas Mixtures 280</p> <p>7.2 Irreversible Reactions 287</p> <p>7.3 Steady-Flow Combustion 295</p> <p>7.3.1 Combustion Stoichiometry 295</p> <p>7.3.2 The First Law 297</p> <p>7.3.3 The Second Law 303</p> <p>7.3.4 Maximum Power Output 306</p> <p>7.4 The Chemical Exergy of Fuels 316</p> <p>7.5 Combustion at Constant Volume 320</p> <p>7.5.1 The First Law 320</p> <p>7.5.2 The Second Law 322</p> <p>7.5.3 Maximum Work Output 323</p> <p>References 324</p> <p>Problems 325</p> <p><b>8 Power Generation 328</b></p> <p>8.1 Maximum Power Subject to Size Constraint 328</p> <p>8.2 Maximum Power from a Hot Stream 332</p> <p>8.3 External Irreversibilities 338</p> <p>8.4 Internal Irreversibilities 344</p> <p>8.4.1 Heater 344</p> <p>8.4.2 Expander 346</p> <p>8.4.3 Cooler 346</p> <p>8.4.4 Pump 348</p> <p>8.4.5 Relative Importance of Internal Irreversibilities 348</p> <p>8.5 Advanced Steam Turbine Power Plants 352</p> <p>8.5.1 Superheater, Reheater, and Partial Condenser Vacuum 352</p> <p>8.5.2 Regenerative Feed Heating 355</p> <p>8.5.3 Combined Feed Heating and Reheating 362</p> <p>8.6 Advanced Gas Turbine Power Plants 366</p> <p>8.6.1 External and Internal Irreversibilities 366</p> <p>8.6.2 Regenerative Heat Exchanger, Reheaters, and Intercoolers 371</p> <p>8.6.3 Cooled Turbines 374</p> <p>8.7 Combined Steam Turbine and Gas Turbine Power Plants 376</p> <p>References 379</p> <p>Problems 381</p> <p><b>9 Solar Power 394</b></p> <p>9.1 Thermodynamic Properties of Thermal Radiation 394</p> <p>9.1.1 Photons 395</p> <p>9.1.2 Temperature 396</p> <p>9.1.3 Energy 397</p> <p>9.1.4 Pressure 399</p> <p>9.1.5 Entropy 400</p> <p>9.2 Reversible Processes 403</p> <p>9.2.1 Reversible and Adiabatic Expansion or Compression 403</p> <p>9.2.2 Reversible and Isothermal Expansion or Compression 403</p> <p>9.2.3 Carnot Cycle 404</p> <p>9.3 Irreversible Processes 404</p> <p>9.3.1 Adiabatic Free Expansion 404</p> <p>9.3.2 Transformation of Monochromatic Radiation into Blackbody Radiation 405</p> <p>9.3.3 Scattering 407</p> <p>9.3.4 Net Radiative Heat Transfer 408</p> <p>9.3.5 Kirchhoff’s Law 412</p> <p>9.4 The Ideal Conversion of Enclosed Blackbody Radiation 413</p> <p>9.4.1 Petela’s Theory 413</p> <p>9.4.2 Unifying Theory 416</p> <p>9.5 Maximization of Power Output Per Unit Collector Area 424</p> <p>9.5.1 Ideal Concentrators 424</p> <p>9.5.2 Omnicolor Series of Ideal Concentrators 427</p> <p>9.5.3 Unconcentrated Solar Radiation 428</p> <p>9.6 Convectively Cooled Collectors 431</p> <p>9.6.1 Linear Convective Heat Loss Model 432</p> <p>9.6.2 Effect of Collector–Engine Heat Exchanger Irreversibility 433</p> <p>9.6.3 Combined Convective and Radiative Heat Loss 434</p> <p>9.7 Extraterrestrial Solar Power Plant 436</p> <p>9.8 Climate 438</p> <p>9.9 Self-Pumping and Atmospheric Circulation 449</p> <p>References 453</p> <p>Problems 455</p> <p><b>10 Refrigeration 461</b></p> <p>10.1 Joule–Thomson Expansion 461</p> <p>10.2 Work-Producing Expansion 468</p> <p>10.3 Brayton Cycle 471</p> <p>10.4 Intermediate Cooling 477</p> <p>10.4.1 Counterflow Heat Exchanger 477</p> <p>10.4.2 Bioheat Transfer 479</p> <p>10.4.3 Distribution of Expanders 480</p> <p>10.4.4 Insulation 484</p> <p>10.5 Liquefaction 492</p> <p>10.5.1 Liquefiers versus Refrigerators 492</p> <p>10.5.2 Heylandt Nitrogen Liquefier 494</p> <p>10.5.3 Efficiency of Liquefiers and Refrigerators 498</p> <p>10.6 Refrigerator Models with Internal Heat Leak 502</p> <p>10.6.1 Heat Leak in Parallel with Reversible Compartment 502</p> <p>10.6.2 Time-Dependent Operation 505</p> <p>10.7 Magnetic Refrigeration 509</p> <p>10.7.1 Fundamental Relations 509</p> <p>10.7.2 Adiabatic Demagnetization 513</p> <p>10.7.3 Paramagnetic Thermometry 514</p> <p>10.7.4 The Third Law of Thermodynamics 517</p> <p>References 518</p> <p>Problems 521</p> <p><b>11 Entropy Generation Minimization 531</b></p> <p>11.1 Competing Irreversibilities 531</p> <p>11.1.1 Internal Flow and Heat Transfer 531</p> <p>11.1.2 Heat Transfer Augmentation 536</p> <p>11.1.3 External Flow and Heat Transfer 538</p> <p>11.1.4 Convective Heat Transfer in General 541</p> <p>11.2 Balanced Counterflow Heat Exchangers 543</p> <p>11.2.1 The Ideal Limit 545</p> <p>11.2.2 Area Constraint 548</p> <p>11.2.3 Volume Constraint 550</p> <p>11.2.4 Combined Area and Volume Constraint 551</p> <p>11.2.5 Negligible Pressure Drop Irreversibility 551</p> <p>11.2.6 The Structure of Heat Exchanger Irreversibility 553</p> <p>11.3 Storage Systems 555</p> <p>11.3.1 Sensible-Heat Storage 555</p> <p>11.3.2 Storage Time Interval 556</p> <p>11.3.3 Heat Exchanger Size 558</p> <p>11.3.4 Storage Followed by Removal of Exergy 561</p> <p>11.3.5 Heating and Cooling Subject to Time Constraint 564</p> <p>11.3.6 Latent-Heat Storage 567</p> <p>11.4 Power Maximization or Entropy Generation Minimization 570</p> <p>11.4.1 Heat Transfer Irreversible Power Plant Models 571</p> <p>11.4.2 Minimum Entropy Generation Rate 573</p> <p>11.4.3 Fluid Flow Systems 577</p> <p>11.4.4 Electrical Machines 581</p> <p>11.5 From Entropy Generation Minimization to Constructal Law 583</p> <p>11.5.1 The Generation-of-Configuration Phenomenon 583</p> <p>11.5.2 Organ Size 586</p> <p>References 592</p> <p>Problems 595</p> <p><b>12 Irreversible Thermodynamics 601</b></p> <p>12.1 Conjugate Fluxes and Forces 602</p> <p>12.2 Linearized Relations 606</p> <p>12.3 Reciprocity Relations 607</p> <p>12.4 Thermoelectric Phenomena 610</p> <p>12.4.1 Formulations 610</p> <p>12.4.2 The Peltier Effect 613</p> <p>12.4.3 The Seebeck Effect 615</p> <p>12.4.4 The Thomson Effect 616</p> <p>12.4.5 Power Generation 618</p> <p>12.4.6 Refrigeration 623</p> <p>12.5 Heat Conduction in Anisotropic Media 625</p> <p>12.5.1 Formulation in Two Dimensions 626</p> <p>12.5.2 Principal Directions and Conductivities 628</p> <p>12.5.3 The Concentrated Heat Source Experiment 631</p> <p>12.5.4 Three-Dimensional Conduction 633</p> <p>12.6 Mass Diffusion 635</p> <p>12.6.1 Nonisothermal Diffusion of a Single Component 635</p> <p>12.6.2 Nonisothermal Binary Mixtures 637</p> <p>12.6.3 Isothermal Diffusion 639</p> <p>References 640</p> <p>Problems 642</p> <p><b>13 The Constructal Law 646</b></p> <p>13.1 Evolution 646</p> <p>13.2 Mathematical Formulation of the Constructal Law 649</p> <p>13.2.1 Properties of Flow Systems with Configuration 649</p> <p>13.2.2 Evolution by Increasing Global Performance 651</p> <p>13.2.3 Evolution by Increasing Compactness 652</p> <p>13.2.4 Evolution by Increasing Flow Territory 652</p> <p>13.2.5 Freedom Is Good for Evolution and Survival (Persistence) 654</p> <p>13.3 Inanimate Flow Systems 655</p> <p>13.3.1 Duct Cross Sections 655</p> <p>13.3.2 Open-Channel Cross Sections 657</p> <p>13.3.3 Tree-Shaped Fluid Flow and River Basins 658</p> <p>13.3.4 Turbulent Flow Structure 664</p> <p>13.3.5 Coalescence of Flowing Solid Packets 668</p> <p>13.3.6 Cracks, Splashes, and Splats 669</p> <p>13.3.7 Dendritic Solidification 669</p> <p>13.3.8 Global Circulation and Climate 671</p> <p>13.4 Animate Flow Systems 673</p> <p>13.4.1 Body Heat Loss 673</p> <p>13.4.2 Branches, Diameters, and Lengths 678</p> <p>13.4.3 Breathing and Heartbeating 680</p> <p>13.4.4 Flying, Running, and Swimming 681</p> <p>13.4.5 Life Span and Life Travel 687</p> <p>13.4.6 Athletics Evolution 688</p> <p>13.5 Size and Efficiency: Economies of Scale 689</p> <p>13.6 Growth, Spreading, and Collecting 691</p> <p>13.7 Asymmetry and Vascularization 693</p> <p>13.8 Human Preferences for Shapes 697</p> <p>13.9 The Arrow of Time 699</p> <p>References 702</p> <p>Problems 706</p> <p><b>Appendix 725</b></p> <p>Constants 725</p> <p>Mathematical Formulas 726</p> <p>Variational Calculus 727</p> <p>Properties of Moderately Compressed Liquid States 728</p> <p>Properties of Slightly Superheated Vapor States 729</p> <p>Properties of Cold Water Near the Density Maximum 729</p> <p>References 730</p> <p>Symbols 731</p> <p>Index 741</p>
<p><b>ADRIAN BEJAN</b> is the J.A. Jones Distinguished Professor of Mechanical Engineering at Duke University, and an internationally-recognized authority on thermodynamics. The father of the field of design in nature or constructal law, which accounts for the universal natural tendency of all flow systems to evolve freely toward easier flow access, his research covers a broad range of topics in thermodynamics, heat transfer, fluid mechanics, convection, and porous media. Professor Bejan has been awarded eighteen honorary doctorates by universities in eleven countries, and is the recipient of numerous awards including the Max Jacob Memorial Award (ASME & AIChE), the Worcester Reed Warner Medal (ASME), and the Ralph Coats Roe Award (ASEE). The author of over 630 journal articles, he is considered one of the 100 most-cited engineering researchers of all disciplines, in all countries.
<p><b>GOLD-STANDARD TREATMENT OF ENGINEERING THERMODYNAMICS, WITH COVERAGE OF THE LATEST ADVANCES IN THE FIELD</b> <p><i>Advanced Engineering Thermodynamics</i> is the definitive guide to this complex topic, from one of the world's leading experts in the field. Professor Adrian Bejan provides authoritative guidance on the first and second laws of thermodynamics, with a practical focus on applications within engineering fields. Expanding on the basic information covered in most textbooks, this book offers in-depth analysis and expert insight on the more advanced aspects of heat, energy, and work. <p>This new fourth edition includes coverage of the latest developments, including recent advances in energy storage, distributed energy systems, entropy generation minimization, and other industrial applications to highlight the current state of the field. Designed to instruct the engineers of tomorrow, this book features: <ul> <li>Condensed introductory chapters that allow students to quickly review the fundamentals before diving into practical applications</li> <li>Direct links between thermodynamics and engineering topics including solar energy, refrigeration, chemical design, thermofluid design, and more</li> <li>Sustainability design and policy integrated throughout the text to provide real-world context for thermodynamics applications</li> <li>Exploration of the latest developments and emerging technologies related to thermodynamics optimization</li> <li>Additional problems, including worked problems that provide direct reference for homework and practice</li> <li>Analyses, essays, history, and graphics that work seamlessly together to explain advanced topics in thermodynamics</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €