Details

Cellulose Science and Technology


Cellulose Science and Technology

Chemistry, Analysis, and Applications
1. Aufl.

von: Thomas Rosenau, Antje Potthast, Johannes Hell

181,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 30.11.2018
ISBN/EAN: 9781119217633
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book addresses both classic concepts and state-of-the-art technologies surrounding cellulose science and technology. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science.<br /><br />•    Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners<br />•    Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization<br />•    Maximizes readership by combining fundamental science and application development
<p>Author Biography xv</p> <p>List of Contributors xvii</p> <p>Preface xxiii</p> <p>Acknowledgements xxv</p> <p><b>1 Aminocelluloses – Polymers with Fascinating Properties and Application Potential 1<br /></b><i>Thomas Heinze, Thomas Elschner, and Kristin Ganske</i></p> <p>1.1 Introduction 1</p> <p>1.2 Amino-/ammonium Group Containing Cellulose Esters 2</p> <p>1.2.1 (3-Carboxypropyl)trimethylammonium Chloride Esters of Cellulose 2</p> <p>1.2.2 Cellulose-4-(N-methylamino)butyrate (CMABC) 7</p> <p>1.3 6-Deoxy-6-amino Cellulose Derivatives 9</p> <p>1.3.1 Spontaneous Self-assembling of 6-Deoxy-6-amino Cellulose Derivatives 10</p> <p>1.3.2 Application Potential of 6-Deoxy-6-amino Cellulose Derivatives 13</p> <p>1.4 Amino Cellulose Carbamates 21</p> <p>1.4.1 Synthesis 21</p> <p>1.4.2 Properties 22</p> <p>Acknowledgment 24</p> <p>References 24</p> <p><b>2 Preparation of Photosensitizer-bound Cellulose Derivatives for Photocurrent Generation System 29<br /></b><i>Toshiyuki Takano</i></p> <p>2.1 Introduction 29</p> <p>2.2 Porphyrin-bound Cellulose Derivatives 31</p> <p>2.3 Phthalocyanine-bound Cellulose Derivatives 34</p> <p>2.4 Squaraine-bound Cellulose Derivative 40</p> <p>2.5 Ruthenium(II) Complex-bound Cellulose Derivative 42</p> <p>2.6 Fullerene-bound Cellulose Derivative 44</p> <p>2.7 Porphyrin-bound Chitosan Derivative 45</p> <p>2.8 Conclusion 47</p> <p>References 47</p> <p><b>3 Synthesis of Cellulosic Bottlebrushes with Regioselectively Substituted Side Chains and Their Self-assembly 49<br /></b><i>Keita Sakakibara, Yuji Kinose, and Yoshinobu Tsujii</i></p> <p>3.1 Introduction 49</p> <p>3.2 Strategy for Accomplishing Regioselective Grafting of Cellulose 52</p> <p>3.3 Regioselective Introduction of the First Polymer Side Chain 55</p> <p>3.3.1 Introduction of Poly(styrene) at <i>O</i>-2,3 Position of 6-<i>O</i>-<i>p</i>-Methoxytritylcellulose (1) 55</p> <p>3.3.2 Introduction of Poly(ethylene oxide) at <i>O</i>-2,3 Position of 6-<i>O</i>-<i>p</i>-Methoxytritylcellulose (1) 57</p> <p>3.4 Regioselective Introduction of the Second Polymer Side Chain 58</p> <p>3.4.1 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting-from Approach 58</p> <p>3.4.2 Introduction of Poly(styrene) at <i>O</i>-6 Position of 2,3-di-<i>O</i>-PEO Cellulose (5) via Grafting to Approach Combining Click Reaction 58</p> <p>3.5 SEC-MALLS Study 61</p> <p>3.6 Summary and Outlook 64</p> <p>Acknowledgments 64</p> <p>References 64</p> <p><b>4 Recent Progress on Oxygen Delignification of Softwood Kraft Pulp 67<br /></b><i>Adriaan R. P. van Heiningen, Yun Ji, and Vahid Jafari</i></p> <p>4.1 Introduction and State-of-the-Art of Commercial Oxygen Delignification 67</p> <p>4.2 Chemistry of Delignification and Cellulose Degradation 70</p> <p>4.3 Improving the Reactivity of Residual Lignin 73</p> <p>4.4 Improving Delignification/Cellulose Degradation Selectivity During</p> <p>Oxygen Delignification 79</p> <p>4.5 Improving Pulp Yield by Using Oxygen Delignification 90</p> <p>4.6 Practical Implementation of High Kappa Oxygen Delignification 92</p> <p>References 93</p> <p><b>5 Toward a Better Understanding of Cellulose Swelling, Dissolution, and Regeneration on theMolecular Level 99<br /></b><i>Thomas Rosenau, Antje Potthast, Andreas Hofinger,Markus Bacher, Yuko Yoneda, KurtMereiter, Fumiaki Nakatsubo, Christian Jäger, Alfred D. French, and Kanji Kajiwara</i></p> <p>5.1 Introduction 99</p> <p>5.2 Cellulose Swelling, Dissolution and Regeneration at the Molecular Level 102</p> <p>5.2.1 The “Viewpoint of Cellulose” 109</p> <p>5.2.2 The “Viewpoint of Cellulose Solvents” 113</p> <p>5.3 Conclusion 118</p> <p>References 120</p> <p><b>6 Interaction ofWaterMolecules with Carboxyalkyl Cellulose 127<br /></b><i>HitomiMiyamoto, Keita Sakakibara, IsaoWataoka, Yoshinobu Tsujii, Chihiro Yamane, and Kanji Kajiwara</i></p> <p>6.1 Introduction 127</p> <p>6.2 Carboxymethyl Cellulose (CMC) and Carboxyethyl Cellulose (CEC) 128</p> <p>6.3 Differential Scanning Calorimetry (DSC) 131</p> <p>6.4 Small-Angle X-ray Scattering (SAXS) 133</p> <p>6.5 Molecular Dynamics 136</p> <p>6.6 Chemical Modification and Biodegradability 138</p> <p>Acknowledgments 140</p> <p>References 140</p> <p><b>7 Analysis of the Substituent Distribution in Cellulose Ethers – Recent Contributions 143<br /></b><i>PetraMischnick</i></p> <p>7.1 Introduction 143</p> <p>7.2 Methyl Cellulose 146</p> <p>7.2.1 Average DS and Methyl Pattern in the Glucosyl Unit 146</p> <p>7.2.2 Distribution Along and Over the Chain 149</p> <p>7.2.3 Summary 153</p> <p>7.3 Hydroxyalkylmethyl Celluloses 153</p> <p>7.3.1 Hydroxyethylmethyl Celluloses 159</p> <p>7.3.2 Hydroxypropylmethyl Celluloses 160</p> <p>7.3.3 Summary 165</p> <p>7.4 Carboxymethyl Cellulose 166</p> <p>7.5 Outlook 166</p> <p>Acknowledgment 167</p> <p>References 167</p> <p><b>8 AdhesiveMixtures as Sacrificial Substrates in Paper Aging 175<br /></b><i>Irina Sulaeva, Ute Henniges, Thomas Rosenau, and Antje Potthast</i></p> <p>8.1 Introduction 175</p> <p>8.2 Materials and Methods 177</p> <p>8.2.1 Chemicals 177</p> <p>8.2.2 Preparation of Adhesive Mixtures and Films from Individual Components 177</p> <p>8.2.3 Preparation of Coated Paper Samples 177</p> <p>8.2.4 Accelerated Heat-Induced Aging 179</p> <p>8.2.5 GPC Analysis 179</p> <p>8.2.6 Contact Angle Measurements 180</p> <p>8.2.7 Analysis of Paper Brightness 180</p> <p>8.3 Results and Discussion 180</p> <p>8.3.1 GPC Analysis of Adhesive Mixtures and Individual Components 180</p> <p>8.3.2 Molar Mass Analysis of Paper Samples 182</p> <p>8.3.3 Contact Angle Analysis 184</p> <p>8.3.4 UV–Vis Measurements of Paper Brightness 185</p> <p>8.4 Conclusion 186</p> <p>Acknowledgments 187</p> <p>References 187</p> <p><b>9 Solution-state NMR Analysis of Lignocellulosics in Nonderivatizing Solvents 191<br /></b><i>Ashley J. Holding, AlistairW. T. King, and Ilkka Kilpeläinen</i></p> <p>9.1 Introduction 191</p> <p>9.2 Solution-state 2D NMR of Lignocellulose andWhole Biomass 195</p> <p>9.3 Solution State 1D and 2D NMR Spectroscopy of Cellulose and Pulp 203</p> <p>9.4 Solution-state NMR Spectroscopy of Modified Nanocrystalline Cellulose 211</p> <p>9.5 Solution State 31P NMR Spectroscopy and Quantification of Hydroxyl Groups 212</p> <p>9.6 Conclusions and Future Prospects 218</p> <p>References 219</p> <p><b>10 Surface Chemistry and Characterization of Cellulose Nanocrystals 223<br /></b><i>Samuel Eyley, Christina Schütz, andWimThielemans</i></p> <p>10.1 Introduction 223</p> <p>10.2 Cellulose Nanocrystals 225</p> <p>10.3 Morphological and Structural Characterization 228</p> <p>10.3.1 Microscopy 228</p> <p>10.3.2 Small Angle Scattering 230</p> <p>10.3.3 Powder X-ray Diffraction 230</p> <p>10.3.4 Solid-State NMR Spectroscopy 234</p> <p>10.4 Chemical Characterization 237</p> <p>10.4.1 Infrared Spectroscopy 237</p> <p>10.4.2 Elemental Analysis 238</p> <p>10.4.3 X-ray Photoelectron Spectroscopy 240</p> <p>10.4.4 Other Methods 243</p> <p>10.5 Conclusion 245</p> <p>Acknowledgments 246</p> <p>References 246</p> <p><b>11 Some Comments on Chiral Structures fromCellulose 253<br /></b><i>Derek G. Gray</i></p> <p>11.1 Chirality and Cellulose Nanocrystals 253</p> <p>11.2 Can CNC Form Nematic or Smectic-ordered Materials? 255</p> <p>11.3 Why Do Some CNC Films Not Display Iridescent Colors? 256</p> <p>11.4 IsThere Any Pattern to the Observed Expressions Of Chirality At Length Scales from the Molecular to the Macroscopic? 257</p> <p>Acknowledgments 259</p> <p>References 259</p> <p><b>12 Supramolecular Aspects of Native Cellulose: Fringed-fibrillar Model, Leveling-off Degree of Polymerization and Production of Cellulose Nanocrystals 263<br /></b><i>Eero Kontturi</i></p> <p>12.1 Introduction 263</p> <p>12.2 Fringed-fibrillarModel: Crystallographic, Spectroscopic, and Microscopic Evidence 264</p> <p>12.3 Leveling-off Degree of Polymerization (LODP) 267</p> <p>12.4 Preparation of Cellulose Nanocrystals (CNCs) 270</p> <p>12.5 Conclusion 271</p> <p>References 271</p> <p><b>13 Cellulose Nanofibrils: FromHydrogels to Aerogels 277<br /></b><i>Marco Beaumont, Antje Potthast, and Thomas Rosenau</i></p> <p>13.1 Introduction 277</p> <p>13.2 Cellulose Nanofibrils 278</p> <p>13.3 Hydrogels 282</p> <p>13.3.1 Cellulose Nanofibrils 284</p> <p>13.3.2 Composites 288</p> <p>13.3.3 Modification 293</p> <p>13.4 Aerogels 296</p> <p>13.4.1 Drying of Solvogels 297</p> <p>13.4.2 Mechanical Properties 301</p> <p>13.4.3 Conductive Aerogels 305</p> <p>13.4.4 Hydrophobic Aerogels and Superabsorbents 307</p> <p>13.4.5 Other Applications 315</p> <p>13.5 Conclusion 317</p> <p>Acknowledgments 318</p> <p>References 318</p> <p><b>14 High-performance Lignocellulosic Fibers Spun from Ionic Liquid Solution 341<br /></b><i>Michael Hummel, AnneMichud, YiboMa, Annariikka Roselli, Agnes Stepan, Sanna Hellstén, Shirin Asaadi, and Herbert Sixta</i></p> <p>14.1 Introduction 341</p> <p>14.2 Materials and Methods 347</p> <p>14.2.1 Pulp Dissolution and Filtration 348</p> <p>14.2.2 Rheological Measurements 349</p> <p>14.2.3 Chemical Composition Analysis 349</p> <p>14.2.4 Molar Mass Distribution Analysis 349</p> <p>14.2.5 Fiber Spinning 350</p> <p>14.2.6 Mechanical Analysis of Fibers 351</p> <p>14.3 Results and Discussion 351</p> <p>14.3.1 Lignocellulosic Solutes 351</p> <p>14.3.2 Rheological Properties 352</p> <p>14.3.3 Fiber Spinning 354</p> <p>14.3.4 Fiber Properties 355</p> <p>14.3.5 Summary of the Influence of Noncellulosic Constituents on the Fiber Properties 360</p> <p>14.4 Conclusion 361</p> <p>References 362</p> <p><b>15 Bio-based Aerogels: A New Generation of Thermal Superinsulating Materials 371<br /></b><i>Tatiana Budtova</i></p> <p>15.1 Introduction 371</p> <p>15.2 Cellulose I Based Aerogels andTheir Composites 373</p> <p>15.3 Cellulose II Based Aerogels and Their Composites 378</p> <p>15.4 Pectin-based Aerogels and Their Composites 380</p> <p>15.5 Starch-based Aerogels 386</p> <p>15.6 Alginate Aerogels 386</p> <p>15.7 Conclusions and Prospects 387</p> <p>References 388</p> <p><b>16 Nanocelluloses at the Oil–Water Interface: Emulsions Toward Function and Material Development 393<br /></b><i>Siqi Huan, Mariko Ago, MaryamBorghei, and Orlando J. Rojas</i></p> <p>16.1 Cellulose Nanocrystal Properties in the Stabilization of O/W Interfaces 393</p> <p>16.2 Surfactant-free Emulsions 395</p> <p>16.3 Emulsions Stabilized with Modified Nanocelluloses 398</p> <p>16.4 Surfactant-assisted Emulsions 402</p> <p>16.5 Emulsions with Polymer Coemulsifiers 406</p> <p>16.6 Double Emulsions 409</p> <p>16.7 Emulsion or Emulsion-precursor Systems with Stimuli-responsive Behavior 413</p> <p>16.8 Closing Remarks 418</p> <p>Acknowledgments 418</p> <p>References 418</p> <p><b>17 Honeycomb-patterned Cellulose as a Promising Tool to InvestigateWood CellWall Formation and Deformation 423<br /></b><i>Yasumitsu Uraki, Liang Zhou, Qiang Li, Teuku B. Bardant, and Keiichi Koda</i></p> <p>17.1 Introduction 423</p> <p>17.2 Theory of Honeycomb Deformation 425</p> <p>17.3 HPRC with Cellulose II Polymorphism andTheir Tensile Strength 426</p> <p>17.4 Validity of Deformation Models 428</p> <p>17.5 Deposition of Wood Cell Wall Components on the Film of HPBC Film 430</p> <p>Acknowledgment 432</p> <p>References 433</p> <p>Index 435</p>
<p><b>Thomas Rosenau, PhD,</b> is a professor at BOKU University Vienna, holding the Chair of Wood, Pulp and Fiber Chemistry and heading both the Division of Chemistry of Renewable Resources and the Austrian Biorefinery Center Tulln. <p><b>Antje Potthast, PhD,</b> is a professor in the Department of Chemistry and is the deputy head of both the Division of Chemistry of Renewable Resources and the Austrian Biorefinery Center Tulln. <p><b>Johannes Hell, PhD,</b> is a technical manager at a Viennese chocolate factory.
<p>The field of renewable resources is burgeoning today more than ever. Thus, cellulose science is one of the most scientifically active research fields today in the framework of bioeconomy trends and related fields of biorefineries and biomass utilization. <p><i>Cellulose Science and Technology: Chemistry, Analysis, and Applications</i> addresses concepts and novel developments in the rapidly evolving field of cellulose chemistry, providing an emphasis on the fundamental aspects of nanocellulose and microfibrillated cellulose. Featuring contributions from leading cellulose scientists worldwide, the book describes current attempts to provide and widen the scope of applications of cellulosics in biomass utilization and biomaterial production. <p>The authors address three main topics (chemistry, analysis, and novel applications of cellulosic materials) and provide a panoramic snapshot of state-of-the-art cellulose research. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €