Details

Crustal Permeability


Crustal Permeability


Wiley Works 1. Aufl.

von: Tom Gleeson, Steve Ingebritsen

125,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 01.11.2016
ISBN/EAN: 9781119166597
Sprache: englisch
Anzahl Seiten: 472

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. </p>
<p>List of contributors, xi</p> <p>About the companion websites, xvii</p> <p>1 Introduction, 1<br /><i>Tom Gleeson and Steven Ingebritsen</i></p> <p>2 DigitalCrust –a 4D data system of material properties for transforming research on crustal fluid flow, 6<br /><i>Ying Fan, Stephen Richard, R. Sky Bristol, Shanan E. Peters, Steven E. Ingebritsen, Nils Moosdorf, Aaron </i><i>Packman, Tom Gleeson, I. Zaslavsky, S. Peckham, Lawrence Murdoch, Michael Fienen, Michael Cardiff, David Tarboton, Norman Jones, Richard Hooper, Jennifer Arrigo, D. Gochis, J. Olson and David Wolock</i></p> <p><b>Part I: The physics of permeability, 13</b></p> <p>3 The physics of permeability, 15<br /><i>Tom Gleeson and Steven E. Ingebritsen</i></p> <p>4 A pore-scale investigation of the dynamic response of saturated porous media to transient stresses, 16<br /><i>Christian Huber and Yanqing Su</i></p> <p>5 Flow of concentrated suspensions through fractures: small variations in solid concentration cause significant in-plane velocity variations, 27<br /><i>Ricardo Medina, Jean E. Elkhoury, Joseph P. Morris, Romain Prioul, Jean Desroches and Russell L. Detwiler</i></p> <p>6 Normal stress-induced permeability hysteresis of a fracture in a granite cylinder, 39<br /><i>A. P. S. Selvadurai</i></p> <p>7 Linking microearthquakes to fracture permeability evolution, 49<br /><i>Takuya Ishibashi, Noriaki Watanabe, Hiroshi Asanuma and Noriyoshi Tsuchiya</i></p> <p>8 Fractured rock stress–permeability relationships from in situ data and effects of temperature and chemical–mechanical couplings, 65<br /><i>Jonny Rutqvist</i></p> <p><b>Part II: Static permeability, 83</b></p> <p>9 Static permeability, 85<br /><i>Tom Gleeson and Steven E. Ingebritsen</i></p> <p><b>Part II(A): Sediments and sedimentary rocks</b></p> <p>10 How well can we predict permeability in sedimentary basins? Deriving and evaluating porosity–permeability equations for noncemented sand and clay mixtures, 89<br /><i>Elco Luijendijk and Tom Gleeson</i></p> <p>11 Evolution of sediment permeability during burial and subduction, 104<br /><i>Hugh Daigle and Elizabeth J. Screaton</i></p> <p><b>Part II(B): Igneous and metamorphic rocks</b></p> <p>12 Is the permeability of crystalline rock in the shallow crust related to depth, lithology, or tectonic setting?, 125<br /><i>Mark Ranjram, Tom Gleeson and Elco Luijendijk</i></p> <p>13 Understanding heat and groundwater flow through continental flood basalt provinces: Insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, United States, 137<br /><i>Erick R. Burns, Colin F. Williams, Steven E. Ingebritsen, Clifford I. Voss, Frank A. Spane and Jacob DeAngelo</i></p> <p>14 Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the Truth or Consequences, New Mexico low-temperature geothermal system, 155<br /><i>Jeffrey Pepin, Mark Person, Fred Phillips, Shari Kelley, Stacy Timmons, Lara Owens, James Witcher and Carl W. Gable</i></p> <p>15 Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid– rock interaction in crystalline basement rocks, 174<br />Ingrid Stober and Kurt Bucher</p> <p><b>Part III: Dynamic permeability, 189</b></p> <p>16 Dynamic permeability, 191<br /><i>Tom Gleeson and Steven E. Ingebritsen</i></p> <p><b>Part III(A): Oceanic crust</b></p> <p>17 Rapid generation of reaction permeability in the roots of black smoker systems, Troodos ophiolite, Cyprus, 195<br /><i>Johnson R. Cann, Andrew M. Mccaig and Bruce W. D. Yardley</i></p> <p><b>Part III(B): Fault zones</b></p> <p>18 The permeability of active subduction plate boundary faults, 209<br /><i>Demian M. Saffer</i></p> <p>19 Changes in hot spring temperature and hydrogeology of the Alpine Fault hanging wall, New Zealand, induced by distal South Island earthquakes, 228<br /><i>Simon C. Cox, Catriona D. Menzies, Rupert Sutherland, Paul H. Denys, Calum Chamberlain and Damon A. H. Teagle</i></p> <p>20 Transient permeability in fault stepovers and rapid rates of orogenic gold deposit formation, 249<br /><i>Steven Micklethwaite, Arianne Ford, Walter Witt and Heather A. Sheldon</i></p> <p>21 Evidence for long-timescale (>103 years) changes in hydrothermal activity induced by seismic events, 260<br /><i>Trevor Howald, Mark Person, Andrew Campbell, Virgil Lueth, Albert Hofstra, Donald Sweetkind, Carl W. Gable, Amlan Banerjee, Elco Luijendijk, Laura Crossey, Karl Karlstrom, Shari Kelley and Fred M. Phillips</i></p> <p><b>Part III(C): Crustal-scale behavior</b></p> <p>22 The permeability of crustal rocks through the metamorphic cycle: an overview, 277<br /><i>Bruce Yardley</i></p> <p>23 An analytical solution for solitary porosity waves: dynamic permeability and fluidization of nonlinear viscous and viscoplastic rock, 285<br /><i>James A. D. Connolly and Y. Y. Podladchikov</i></p> <p>24 Hypocenter migration and crustal seismic velocity distribution observed for the inland earthquake swarms induced by the 2011 Tohoku-Oki earthquake in NE Japan: implications for crustal fluid distribution and crustal permeability, 307<br /><i>T. Okada, T. Matsuzawa, N. Umino, K. Yoshida, A. Hasegawa, H. Takahashi, T. Yamada, M. Kosuga, Tetsuya Takeda, A. Kato, T. Igarashi, K. Obara, S. Sakai, A. Saiga, T. Iidaka, T. Iwasaki, N. Hirata, N. Tsumura, Y. Yamanaka, T. Terakawa, H. Nakamichi, T. Okuda, S. Horikawa, H. Katao, T. Miura, A. Kubo, T. Matsushima, K. Goto and H. Miyamachi</i></p> <p>25 Continental-scale water-level response to a large earthquake, 324<br /><i>Zheming Shi, Guang-Cai Wang, Michael Manga and Chi-Yuen Wang</i></p> <p><b>Part III(D): Effects of fluid injection at the scale of a reservoir or ore-deposit</b></p> <p>26 Development of connected permeability in massive crystalline rocks through hydraulic fracture propagation and shearing accompanying fluid injection, 337<br /><i>Giona Preisig, Erik Eberhardt, Valentin Gischig, Vincent Roche, Mirko van der Baan, Benoit Valley, Peter K. Kaiser, Damien Duff and Robert Lowther</i></p> <p>27 Modeling enhanced geothermal systems and the essential nature of large-scale changes in permeability at the onset of slip, 353<br /><i>Stephen A. Miller</i></p> <p>28 Dynamics of permeability evolution in stimulated geothermal reservoirs, 363<br /><i>Joshua Taron, Steve E. Ingebritsen, Stephen Hickman and Colin F. Williams</i></p> <p>29 The dynamic interplay between saline fluid flow and rock permeability in magmatic–hydrothermal systems, 373<br /><i>Philipp Weis</i></p> <p><b>Part IV: Conclusion, 393</b></p> <p>30 Toward systematic characterization, 395<br /><i>Tom Gleeson and Steven E. Ingebritsen</i></p> <p>References, 398</p> <p>Index, 447</p>
"123 authors contributed to the papers in this book. A glance at their affiliations shows excellent representation of scientists mostly from North America, Europe, and Japan (with one or two authors each from Australia, New Zealand, India, and China). The book editors, Tom Gleeson, University of<br />Victoria, Canada, and Steve Ingebritsen, USGS, are among the top thought leaders in the study and understanding of crustal permeability"......"This book represents an excellent resource and reference for any professional earth scientist concerned with earth systems and processes influenced by the flow of fluids." <b>The Leading Edge, April 2017</b>
<strong>Steve Ingebritsen</strong>, USGS,?Menlo Park California. <p><strong>Tom Gleeson</strong>, University of Victoria, Canada.

Diese Produkte könnten Sie auch interessieren:

Handbuch der Fließgewässer Norddeutschlands
Handbuch der Fließgewässer Norddeutschlands
von: Mario Sommerhäuser, Helmut Schuhmacher
PDF ebook
88,99 €
Hydroecology and Ecohydrology
Hydroecology and Ecohydrology
von: Paul J. Wood, David M. Hannah, Jon P. Sadler
PDF ebook
154,99 €
Analyzing Environmental Data
Analyzing Environmental Data
von: Walter W. Piegorsch, A. John Bailer
PDF ebook
76,99 €