Details

Integration of Renewable Sources of Energy


Integration of Renewable Sources of Energy


2. Aufl.

von: Felix A. Farret, M. Godoy Simoes

104,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 09.06.2017
ISBN/EAN: 9781119137399
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The latest tools and techniques for addressing the challenges of 21<sup>st</sup> century power generation, renewable sources and distribution systems</b></p> <p>Renewable energy technologies and systems are advancing by leaps and bounds, and it’s only a matter of time before renewables replace fossil fuel and nuclear energy sources. Written for practicing engineers, researchers and students alike, this book discusses state-of-the art mathematical and engineering tools for the modeling, simulation and control of renewable and mixed energy systems and related power electronics. Computational methods for multi-domain modeling of integrated energy systems and the solution of power electronics engineering problems are described in detail. </p> <p>Chapters follow a consistent format, featuring a brief introduction to the theoretical background, a description of problems to be solved, as well as objectives to be achieved. Multiple block diagrams, electrical circuits, and mathematical analysis and/or computer code are provided throughout. And each chapter concludes with discussions of lessons learned, recommendations for further studies, and suggestions for experimental work.</p> <p>Key topics covered in detail include:</p> <ul> <li>Integration of the most usual sources of electrical power and related thermal systems</li> <li>Equations for energy systems and power electronics focusing on state-space and power circuit oriented simulations</li> <li>MATLAB® and Simulink® models and functions and their interactions with real-world implementations using microprocessors and microcontrollers</li> <li>Numerical integration techniques, transfer-function modeling, harmonic analysis, and power quality performance assessment</li> <li>MATLAB®/Simulink®, Power Systems Toolbox, and PSIM for the simulation of power electronic circuits, including for renewable energy sources such as wind and solar sources </li> </ul> <p>Written by distinguished experts in the field, <i>Integration of Renewable Sources of Energy, 2nd Edition</i> is a valuable working resource for practicing engineers interested in power electronics, power systems, power quality, and alternative or renewable energy. It is also a valuable text/reference for undergraduate and graduate electrical engineering students. </p> <p> </p>
<p>Foreword for the First Edition xix</p> <p>Foreword for the Second Edition xxi</p> <p>Preface for the First Edition xxiii</p> <p>Preface for the Second Edition xxvii</p> <p>Acknowledgements xxxi</p> <p><b>1 Alternative Sources of Energy 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Renewable Sources of Energy 2</p> <p>1.3 Renewable Energy versus Alternative Energy 4</p> <p>1.4 Planning and Development of Integrated Energy 10</p> <p>1.4.1 Grid?]Supplied Electricity 10</p> <p>1.4.2 Load 11</p> <p>1.4.3 Distributed Generation 12</p> <p>1.5 Renewable Energy Economics 13</p> <p>1.5.1 Calculation of Electricity Generation Costs 14</p> <p>1.5.1.1 Existing Plants 14</p> <p>1.5.1.2 New Plants 15</p> <p>1.5.1.3 Investment Costs 15</p> <p>1.5.1.4 Capital Recovery Factor 16</p> <p>1.6 European Targets for Renewable Powers 16</p> <p>1.6.1 Demand?]Side Management Options 17</p> <p>1.6.2 Supply?]Side Management Options 19</p> <p>1.7 Integrating Renewable Energy Sources 21</p> <p>1.7.1 Integration of Renewable Energy in the United States 23</p> <p>1.7.2 Energy Recovery Time 24</p> <p>1.7.3 Sustainability 26</p> <p>1.8 Modern Electronic Controls for Power Systems 29</p> <p>1.9 Issues Related to Alternative Sources of Energy 31</p> <p>References 35</p> <p><b>2 Principles of Thermodynamics 37</b></p> <p>2.1 Introduction 37</p> <p>2.2 State of a Thermodynamic System 38</p> <p>2.2.1 Heating Value 46</p> <p>2.2.2 First and Second Laws of Thermodynamics and Thermal Efficiency 48</p> <p>2.3 Fundamental Laws and Principles 49</p> <p>2.3.1 Example of Efficiency in a Power Plant 51</p> <p>2.3.2 Practical Problems Associated with Carnot Cycle Plant 54</p> <p>2.3.3 Rankine Cycle for Power Plants 55</p> <p>2.3.4 Brayton Cycle for Power Plants 58</p> <p>2.3.5 Geothermal Energy 60</p> <p>2.3.6 Kalina Cycle 61</p> <p>2.3.7 Energy, Power, and System Balance 62</p> <p>2.4 Examples of Energy Balance 66</p> <p>2.4.1 Simple Residential Energy Balance 66</p> <p>2.4.2 Refrigerator Energy Balance 67</p> <p>2.4.3 Energy Balance for a Water Heater 68</p> <p>2.4.4 Rock Bed Energy Balance 70</p> <p>2.4.5 Array of Solar Collectors 70</p> <p>2.4.6 Heat Pump 71</p> <p>2.4.7 Heat Transfer Analysis 72</p> <p>2.4.8 Simple Steam Power Turbine Analysis 73</p> <p>2.5 Planet Earth: A Closed But Not Isolated System 77</p> <p>References 79</p> <p><b>3 Hydroelectric Power Plants 81</b></p> <p>3.1 Introduction 81</p> <p>3.2 Determination of the Available Power 82</p> <p>3.3 Expedient Topographical and Hydrological Measurements 84</p> <p>3.3.1 Simple Measurement of Elevation 84</p> <p>3.3.2 Global Positioning Systems for Elevation Measurement 85</p> <p>3.3.3 Pipe Losses 86</p> <p>3.3.4 Expedient Measurements of Stream Water Flow 87</p> <p>3.3.4.1 Measurement Using a Float 87</p> <p>3.3.4.2 Measurement Using a Rectangular Spillway 88</p> <p>3.3.4.3 Measurement Using a Triangular Spillway 89</p> <p>3.3.4.4 Measurement Based on the Dilution of Salt in the Water 89</p> <p>3.3.5 Civil Works 92</p> <p>3.4 Hydropower Generator Set 93</p> <p>3.4.1 Regulation Systems 93</p> <p>3.4.2 Butterfly Valves 93</p> <p>3.5 Waterwheels 93</p> <p>3.6 Turbines 96</p> <p>3.6.1 Pelton Turbine 97</p> <p>3.6.2 Francis Turbine 99</p> <p>3.6.3 Michell–Banki Turbine 102</p> <p>3.6.4 Kaplan or Hydraulic Propeller Turbine 103</p> <p>3.6.5 Deriaz Turbines 105</p> <p>3.6.6 Water Pumps Working as Turbines 106</p> <p>3.6.7 Specification of Hydro Turbines 107</p> <p>References 109</p> <p><b>4 Wind Power Plants 111</b></p> <p>4.1 Introduction 111</p> <p>4.2 Appropriate Location 112</p> <p>4.2.1 Evaluation of Wind Intensity 112</p> <p>4.2.1.1 Meteorological Mapping 116</p> <p>4.2.1.2 Weibull Probability Distribution 118</p> <p>4.2.1.3 Analysis of Wind Speed by Visualization 121</p> <p>4.2.1.4 Technique of the Balloon 123</p> <p>4.2.2 Topography 124</p> <p>4.2.3 Purpose of the Energy Generated 124</p> <p>4.2.4 Accessibility 124</p> <p>4.3 Wind Power 125</p> <p>4.3.1 Wind Power Corrections 126</p> <p>4.3.2 Wind Distribution 128</p> <p>4.4 General Classification of Wind Turbines 129</p> <p>4.4.1 Rotor Turbines 131</p> <p>4.4.2 Multiple?]Blade Turbines 131</p> <p>4.4.3 Drag Turbines (Savonius) 132</p> <p>4.4.4 Lifting Turbines 133</p> <p>4.4.4.1 Starting System 134</p> <p>4.4.4.2 Rotor 134</p> <p>4.4.4.3 Lifting 134</p> <p>4.4.4.4 Speed Multipliers 134</p> <p>4.4.4.5 Braking System 135</p> <p>4.4.4.6 Generation System 135</p> <p>4.4.4.7 Horizontal?] and Vertical?]Axis Turbines 135</p> <p>4.4.5 Magnus Turbines 136</p> <p>4.4.6 System TARP–WARP 136</p> <p>4.4.7 Accessories 139</p> <p>4.5 Generators and Speed Control Used in Wind Power Energy 140</p> <p>4.6 Analysis of Small Generating Systems 143</p> <p>4.6.1 Maximization of Cp 145</p> <p>References 148</p> <p><b>5 Thermosolar Power Plants 151</b></p> <p>5.1 Introduction 151</p> <p>5.2 Water Heating by Solar Energy 152</p> <p>5.3 Heat Transfer Calculation of Thermally Isolated Reservoirs 155</p> <p>5.3.1 Steady?]State Thermal Calculations 155</p> <p>5.3.2 Transient?]State Thermal Calculations 156</p> <p>5.3.3 Practical Approximate Measurements of the Thermal Constants R and C in Water Reservoirs 158</p> <p>5.4 Heating Domestic Water 159</p> <p>5.5 Thermosolar Energy 160</p> <p>5.5.1 Parabolic Trough 161</p> <p>5.5.2 Parabolic Dish 163</p> <p>5.5.3 Solar Power Tower 164</p> <p>5.5.4 Production of Hydrogen 166</p> <p>5.6 Economics Analysis of Thermosolar Energy 168</p> <p>References 170</p> <p><b>6 Photovoltaic Power Plants 173</b></p> <p>6.1 Introduction 173</p> <p>6.2 Solar Energy 174</p> <p>6.3 Conversion of Electricity by Photovoltaic Effect 176</p> <p>6.3.1 Photovoltaic Cells 177</p> <p>6.4 Equivalent Models for Photovoltaic Panels 178</p> <p>6.4.1 Dark?]Current Electric Parameters of a Photovoltaic Panel 179</p> <p>6.4.1.1 Measurement of Iλ 180</p> <p>6.4.1.2 Measurement of Rp 180</p> <p>6.4.1.3 Measurement of Id 181</p> <p>6.4.1.4 Measurement of η 182</p> <p>6.4.1.5 Measurement of Is 183</p> <p>6.4.1.6 Measurement of Rs 183</p> <p>6.4.2 Power, Utilization, and Efficiency of a PV Cell 183</p> <p>6.5 Solar Cell Output Characteristics 188</p> <p>6.5.1 Dependence of a PV Cell Characteristic on Temperature and PV Cells 190</p> <p>6.5.2 Model of a PV Panel Consisting of n Cells in Series 193</p> <p>6.5.3 Model of a PV Panel Consisting of n Cells in Parallel 195</p> <p>6.6 Photovoltaic Systems 196</p> <p>6.6.1 Irradiance Area 197</p> <p>6.6.2 Solar Modules and Panels 198</p> <p>6.6.3 Aluminum Structures 198</p> <p>6.6.4 Load Controller 200</p> <p>6.6.5 Battery Bank 200</p> <p>6.6.6 Array Orientation 200</p> <p>6.7 Applications of Photovoltaic Solar Energy 201</p> <p>6.7.1 Residential and Public Illumination 201</p> <p>6.7.2 Stroboscopic Signaling 202</p> <p>6.7.3 Electric Fence 203</p> <p>6.7.4 Telecommunications 203</p> <p>6.7.5 Water Supply and Micro?]irrigation Systems 203</p> <p>6.7.6 Control of Plagues and Conservation of Food and Medicine 205</p> <p>6.7.7 Hydrogen and Oxygen Generation by Electrolysis 206</p> <p>6.7.8 Electric Power Supply 208</p> <p>6.7.9 Security Video Cameras and Alarm Systems 209</p> <p>6.8 Economics and Analysis of Solar Energy 209</p> <p>References 214</p> <p><b>7 Power Plants with Fuel Cells 217</b></p> <p>7.1 Introduction 217</p> <p>7.2 The Fuel Cell 218</p> <p>7.3 Commercial Technologies for the Generation of Electricity 220</p> <p>7.4 Practical Issues Related to Fuel Cell Stacking 231</p> <p>7.4.1 Low?] and High?]Temperature Fuel Cells 231</p> <p>7.4.2 Commercial and Manufacturing Issues 232</p> <p>7.5 Constructional Features of Proton Exchange Membrane Fuel Cells 233</p> <p>7.6 Constructional Features of Solid Oxide Fuel Cells 236</p> <p>7.7 Reformers, Electrolyzer Systems, and Related Precautions 237</p> <p>7.8 Advantages and Disadvantages of Fuel Cells 238</p> <p>7.9 Fuel Cell Equivalent Circuit 239</p> <p>7.10 Water, Air, and Heat Management 246</p> <p>7.10.1 Fuel Cells and Their Thermal Energy Evaluation 247</p> <p>7.11 Experimental Evaluation of the Fuel Cell Equivalent Model Parameters 250</p> <p>7.11.1 Determination of FC Parameters 253</p> <p>7.12 Aspects of Hydrogen as Fuel 256</p> <p>7.13 Load Curve Peak Shaving with Fuel Cells 258</p> <p>7.13.1 Maximal Load Curve Flatness at Constant Output Power 258</p> <p>7.14 Future Trends 260</p> <p>References 263</p> <p><b>8 Biomass?]Powered Microplants 267</b></p> <p>8.1 Introduction 267</p> <p>8.2 Fuel from Biomass 272</p> <p>8.3 Biogas 274</p> <p>8.4 Biomass for Biogas 275</p> <p>8.5 Biological Formation of Biogas 277</p> <p>8.6 Factors Affecting Biodigestion 277</p> <p>8.7 Characteristics of Biodigesters 279</p> <p>8.8 Construction of a Biodigester 281</p> <p>8.8.1 Typical Size for a Biodigester 282</p> <p>8.9 Generation of Electricity Using Biogas 282</p> <p>References</p> <p>286</p> <p><b>9 Microturbines 289</b></p> <p>9.1 Introduction 289</p> <p>9.2 Principles of Operation 291</p> <p>9.3 Microturbine Fuel 293</p> <p>9.4 Control of Microturbine 294</p> <p>9.4.1 Mechanical?]Side Structure 295</p> <p>9.4.2 Electrical?]Side Structure 297</p> <p>9.4.3 Control?]Side Structure 298</p> <p>9.5 Efficiency and Power of Microturbines 303</p> <p>9.6 Site Assessment for Installation of Microturbines 305</p> <p>References 307</p> <p><b>10 Earth Core and Solar Heated Geothermal Energy Plants 311</b></p> <p>10.1 Introduction 311</p> <p>10.2 Earth Core Geothermal as a Source of Energy 313</p> <p>10.2.1 Earth Core Geothermal Economics 314</p> <p>10.2.2 Examples of Earth Core Geothermal Electricity 316</p> <p>10.3 Solar Heat Stored Underground as a Source of Energy 317</p> <p>10.3.1 Heat Exchange with Nature 319</p> <p>10.3.2 Heat Exchange with Surface Water 322</p> <p>10.3.3 Heat Exchange with Circulating Fluid 322</p> <p>10.4 Solar Geothermal Heat Exchangers 323</p> <p>10.4.1 Horizontal Serpentines 324</p> <p>10.4.2 Vertical Serpentines 326</p> <p>10.4.3 Mixed Serpentines 326</p> <p>10.4.4 Pressurized Serpentines Heat Pump 326</p> <p>10.5 Heat Exchange with a Room 328</p> <p>References 329</p> <p><b>11 Thermocouple, Sea Waves, Tide, MHD, and Piezoelectric Power Plants 331</b></p> <p>11.1 Introduction 331</p> <p>11.2 Thermocouple Electric Power Generation 331</p> <p>11.2.1 Thermocouples 332</p> <p>11.2.2 Power Conversion Using Thermocouples 334</p> <p>11.2.3 Principle of Semiconductor Thermocouples 336</p> <p>11.2.4 A Stack of Semiconductor Thermocouples 338</p> <p>11.2.5 A Plate of Semiconductor Thermocouples 338</p> <p>11.2.6 Advantages and Disadvantages of the Semiconductor Thermocouples 339</p> <p>11.3 Power Plants with Ocean Waves 339</p> <p>11.3.1 Sea Wave Energy Extraction Technology 341</p> <p>11.3.2 Energy Content in Sea Waves 344</p> <p>11.4 Tide?] Based Small Power Plants 345</p> <p>11.5 Small Central Magnetohydrodynamic 347</p> <p>11.6 Small Piezoelectric Power Plant 349</p> <p>11.6.1 Piezoelectric Energy Conversion 350</p> <p>11.6.2 Piezoelectric?]Based Energy Applications 352</p> <p>References 352</p> <p><b>12 Induction Generators 357</b></p> <p>12.1 Introduction 357</p> <p>12.2 Principles of Operation 358</p> <p>12.3 Representation of Steady?]State Operation 360</p> <p>12.4 Power and Losses Generated 362</p> <p>12.5 Self?] Excited Induction Generator 364</p> <p>12.6 Magnetizing Curves and Self?]Excitation 368</p> <p>12.7 Mathematical Description of the Self?]Excitation Process 369</p> <p>12.8 Grid?] Connected and Stand?]Alone Operations 372</p> <p>12.9 Speed and Voltage Control 374</p> <p>12.9.1 Frequency, Speed, and Voltage Controls 376</p> <p>12.9.2 The Danish Concept: Two Generators on the Same Shaft 383</p> <p>12.9.3 Variable?]Speed Grid Connection 384</p> <p>12.9.4 Control by the Load versus Control by the Source 385</p> <p>12.10 Economics Considerations 387</p> <p>References 389</p> <p><b>13 Permanent Magnet Generators 393</b></p> <p>13.1 Introduction 393</p> <p>13.1.1 PMSG Radial Flux Machines 394</p> <p>13.1.2 Axial Flux Machines 394</p> <p>13.1.3 Operating Principle of the PMSG 395</p> <p>13.2 Permanent Magnets Used for PMSGs 397</p> <p>13.3 Modeling a Permanent Magnet Synchronous Machine 398</p> <p>13.3.1 Simplified Model of a PMSG 402</p> <p>13.4 Core Types of a PMSG 407</p> <p>13.5 PSIM Simulation of the PMSG 408</p> <p>13.6 Advantages and Disadvantages of the PMSG 408</p> <p>References 411</p> <p><b>14 Storage Systems 413</b></p> <p>14.1 Introduction 413</p> <p>14.2 Energy Storage Parameters 416</p> <p>14.3 Lead–Acid Batteries 419</p> <p>14.3.1 Constructional Features 421</p> <p>14.3.2 Battery Charge–Discharge Cycles 422</p> <p>14.3.3 Operating Limits and Parameters 424</p> <p>14.3.4 Maintenance of Lead–Acid Batteries 426</p> <p>14.3.5 Sizing Lead–Acid Batteries for DG Applications 427</p> <p>14.4 Ultracapacitors (Supercapacitors) 429</p> <p>14.4.1 Double?]Layer Effect 430</p> <p>14.4.2 High?]Energy Ultracapacitors 432</p> <p>14.4.3 Applications of Ultracapacitors 433</p> <p>14.5 Flywheels 435</p> <p>14.5.1 Advanced Performance of Flywheels 436</p> <p>14.5.2 Applications of Flywheels 437</p> <p>14.5.3 Design Strategies 439</p> <p>14.6 Superconducting Magnetic Storage System 441</p> <p>14.6.1 SMES System Capabilities 443</p> <p>14.6.2 Developments in SMES Systems 444</p> <p>14.7 Pumped Hydroelectric Storage 446</p> <p>14.7.1 Storage Capabilities of Pumped Systems 447</p> <p>14.8 Compressed Air Energy Storage 449</p> <p>14.9 Heat Storage 451</p> <p>14.10 Hydrogen Storage 452</p> <p>14.11 Energy Storage as an Economic Resource 453</p> <p>References 457</p> <p><b>15 Integration of Alternative Sources of Energy 461</b></p> <p>15.1 Introduction 461</p> <p>15.2 Principles of Power Interconnection 462</p> <p>15.2.1 Converting Technologies 462</p> <p>15.2.2 Power Converters for Power Injection into the Grid 464</p> <p>15.2.3 Power Flow 466</p> <p>15.3 Instantaneous Active and Reactive Power Control Approach 470</p> <p>15.4 Integration of Multiple Renewable Energy Sources 473</p> <p>15.4.1 DC?]Link Integration 475</p> <p>15.4.2 AC?]Link Integration 477</p> <p>15.4.3 HFAC?]Link Integration 478</p> <p>15.5 Islanding and Interconnection Control 481</p> <p>15.6 DG PLL with Clarke and Park Transformations 490</p> <p>15.6.1 Clarke Transformation for AC?]Link Integration 490</p> <p>15.6.2 Blondel or Park Transformation for AC?]Link Integration 492</p> <p>15.7 DG Control and Power Injection 494</p> <p>References 500</p> <p><b>16 Distributed Generation 503</b></p> <p>16.1 Introduction 503</p> <p>16.2 The Purpose of Distributed Generation 506</p> <p>16.2.1 Modularity 507</p> <p>16.2.2 Efficiency 507</p> <p>16.2.3 Low or No Emissions 507</p> <p>16.2.4 Security 507</p> <p>16.2.5 Load Management 508</p> <p>16.3 Sizing and Siting of Distributed Generation 510</p> <p>16.4 Demand?]Side Management 511</p> <p>16.5 Optimal Location of Distributed Energy Sources 512</p> <p>16.5.1 DG Influence on Power and Energy Losses 514</p> <p>16.5.2 Estimation of DG Influence on Power Losses of Sub?]transmission Systems 518</p> <p>16.5.3 Equivalent of Sub?]transmission Systems Using Experimental Design 521</p> <p>16.6 Algorithm of Multicriterial Analysis 523</p> <p>16.6.1 Voltage Quality in DG Systems 525</p> <p>References 530</p> <p><b>17 Interconnection of Alternative Energy Sources with the Grid 533<br /></b><i>Benjamin Kroposki, Thomas Basso, Richard Deblasio, and N. Richard Friedman</i></p> <p>17.1 Introduction 533</p> <p>17.2 Interconnection Technologies 536</p> <p>17.2.1 Synchronous Interconnection 536</p> <p>17.2.2 Induction Interconnection 537</p> <p>17.2.3 Inverter Interconnection 538</p> <p>17.3 Standards and Codes for Interconnection 539</p> <p>17.3.1 IEEE 1547 539</p> <p>17.3.2 National Electrical Code 540</p> <p>17.3.2.1 NFPA 70: National Electrical Code 540</p> <p>17.3.2.2 NFPA 853: Standard for the Installation of Stationary Fuel Cell Power Plants 541</p> <p>17.3.3 UL Standards 541</p> <p>17.3.3.1 UL 1741: Inverters, Converters, and Controllers for Use in Independent Power Systems 541</p> <p>17.3.3.2 UL 1008: Transfer Switch Equipment 541</p> <p>17.3.3.3 UL 2200: Standard for Safety for Stationary Engine Generator Assemblies 543</p> <p>17.4 Interconnection Considerations 543</p> <p>17.4.1 Voltage Regulation 543</p> <p>17.4.2 Integration with Area EPS Grounding 544</p> <p>17.4.3 Synchronization 544</p> <p>17.4.4 Isolation 545</p> <p>17.4.5 Response to Voltage Disturbance 545</p> <p>17.4.6 Response to Frequency Disturbance 546</p> <p>17.4.7 Disconnection for Faults 548</p> <p>17.4.8 Loss of Synchronism 549</p> <p>17.4.9 Feeder Reclosing Coordination 549</p> <p>17.4.10 Dc Injection 550</p> <p>17.4.11 Voltage Flicker 550</p> <p>17.4.12 Harmonics 551</p> <p>17.4.13 Unintentional Islanding Protection 553</p> <p>17.5 Interconnection Examples for Alternative Energy Sources 553</p> <p>17.5.1 Synchronous Generator for Peak Demand Reduction 555</p> <p>17.5.2 Small Grid?]Connected PV System 555</p> <p>References 557</p> <p><b>18 Micropower System Modeling with HOMER 559<br /></b><i>Tom Lambert, Paul Gilman, and Peter Lilienthal</i></p> <p>18.1 Introduction 559</p> <p>18.2 Simulation 561</p> <p>18.3 Optimization 566</p> <p>18.4 Sensitivity Analysis 569</p> <p>18.4.1 Dealing with Uncertainty 570</p> <p>18.4.2 Sensitivity Analyses on Hourly Data Sets 573</p> <p>18.5 Physical Modeling 574</p> <p>18.5.1 Loads 574</p> <p>18.5.1.1 Primary Load 575</p> <p>18.5.1.2 Deferrable Load 575</p> <p>18.5.1.3 Thermal Load 576</p> <p>18.5.2 Resources 577</p> <p>18.5.2.1 Solar Resource 577</p> <p>18.5.2.2 Wind Resource 577</p> <p>18.5.2.3 Hydro Resource 578</p> <p>18.5.2.4 Biomass Resource 578</p> <p>18.5.3 Components 579</p> <p>18.5.3.1 PV Array 580</p> <p>18.5.3.2 Wind Turbine 581</p> <p>18.5.3.3 Hydro Turbine 582</p> <p>18.5.3.4 Generators 583</p> <p>18.5.3.5 Battery Bank 585</p> <p>18.5.3.6 Grid 589</p> <p>18.5.3.7 Boiler 591</p> <p>18.5.3.8 Converter 591</p> <p>18.5.3.9 Electrolyzer 592</p> <p>18.5.3.10 Hydrogen Tank 592</p> <p>18.5.4 System Dispatch 592</p> <p>18.5.4.1 Operating Reserve 593</p> <p>18.5.4.2 Control of Dispatchable System Components 594</p> <p>18.5.4.3 Dispatch Strategy 597</p> <p>18.5.4.4 Load Priority 598</p> <p>18.6 Economic Modeling 598</p> <p>References 601</p> <p>Appendix A Diesel Power Plants 603</p> <p>A.1 Introduction 603</p> <p>A.2 The</p> <p>Diesel Engine 604</p> <p>A.3 Main Components of a Diesel Engine 604</p> <p>A.3.1 Fixed Parts 605</p> <p>A.3.2 Moving Parts 605</p> <p>A.3.3 Auxiliary Systems 605</p> <p>A.4 Terminology of Diesel Engines 606</p> <p>A.4.1 The Diesel Cycle 606</p> <p>A.4.2 Combustion Process 608</p> <p>A.4.2.1 Four?]Stroke Diesel Engine 609</p> <p>A.5 Cycle of the Diesel Engine 609</p> <p>A.5.1 Relative Diesel Engine Cycle Losses 610</p> <p>A.5.2 Classification of the Diesel Engine 610</p> <p>A.6 Types of Fuel Injection Pumps 611</p> <p>A.7 Electrical Conditions of Generators Driven by Diesel Engines 612</p> <p>References 614</p> <p>Appendix B The Stirling Engine 615</p> <p>B.1 Introduction 615</p> <p>B.2 The Stirling Cycle 616</p> <p>B.3 Displacer?]Type Stirling Engine 619</p> <p>B.4 Two?]Piston Stirling Engine 621</p> <p>References 623</p> <p>Index 625</p> <p> </p>
<p> <b>Felix A. Farret,</b> PhD, is a Professor in the Department of Processing Energy, at the Federal University of Santa Maria, Brazil. He is the Coordinator of the Center of Excellence in Energy and Power Systems (CEESP) at Federal University of Santa Maria. He has been involved with R&D for industrial electronics and alternative energy sources for more than four decades. <p><b>M. Godoy Simões,</b> PhD, IEEE Fellow, is a Professor in the Electrical Engineering Department at Colorado School of Mines. Dr. Sim??es pioneered the application of neural networks and fuzzy logic in power electronics, motor drives and renewable energy systems.
<p> <b>The latest tools and techniques for addressing the challenges of 21st century power generation, renewable sources, and distribution systems</b> <p> This book covers a wide range of renewable energy technologies including hydro-power plants, solar power, wind power, fuel cell based power, photovoltaics, geothermal power, micro-turbines, ocean power systems as well as biomass-based systems. In order to make energy systems run properly, different energy storage systems are also covered. In some of the presented systems, generation is done by conventional power generators like induction, PMSG, and synchronous generators. These are also covered in this comprehensive book. Integration of electrical power sources is also discussed, as well as interconnection of electrical power electronic-based generator systems. The book ends with modeling examples of a micro-power system. <p> Chapters follow a consistent format, featuring a brief introduction to the theoretical background, a description of problems to be solved, as well as objectives to be achieved. Multiple block diagrams, electrical circuits, and mathematical analysis and/or computer codes are provided throughout. Each chapter concludes with discussions of lessons learned, recommendations for further studies, and suggestions for experimental work. <p>Key topics covered in detail include: <ul> <li>Integration of the most usual sources of electrical power and related thermal systems</li> <li>Equations for energy systems and power electronics focusing on state-space and power circuit oriented simulations</li> <li>MATLAB® and Simulink® models and functions and their interactions with real-world implementations using microprocessors and microcontrollers</li> <li>Numerical integration techniques, transfer-function modeling, harmonic analysis, and power quality performance assessment</li> <li>MATLAB®/Simulink®, Power Systems Toolbox, and PSIM for the simulation of power electronic circuits, including for renewable energy sources such as wind and solar sources</li> </ul> <br> <p> Written by distinguished experts in the field, <i>Integration of Renewable Sources of Energy, Second Edition</i> is a valuable working resource for practicing engineers interested in power electronics, power systems, power quality, and alternative or renewable energy. It is also a valuable text/reference for undergraduate and graduate electrical engineering students.

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €