Details

Building an Effective Security Program for Distributed Energy Resources and Systems


Building an Effective Security Program for Distributed Energy Resources and Systems


1. Aufl.

von: Mariana Hentea

125,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 06.04.2021
ISBN/EAN: 9781119070429
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Building an Effective Security Program for Distributed Energy Resources and Systems</b> <p><b>Build a critical and effective security program for DERs</b><p><i>Building an Effective Security Program for Distributed Energy Resources and Systems</i> requires a unified approach to establishing a critical security program for DER systems and Smart Grid applications. The methodology provided integrates systems security engineering principles, techniques, standards, and best practices.<p>This publication introduces engineers on the design, implementation, and maintenance of a security program for distributed energy resources (DERs), smart grid, and industrial control systems. It provides security professionals with understanding the specific requirements of industrial control systems and real-time constrained applications for power systems. This book:<ul><li>Describes the cybersecurity needs for DERs and power grid as critical infrastructure</li><li>Introduces the information security principles to assess and manage the security and privacy risks of the emerging Smart Grid technologies</li><li>Outlines the functions of the security program as well as the scope and differences between traditional IT system security requirements and those required for industrial control systems such as SCADA systems</li><li>Offers a full array of resources— cybersecurity concepts, frameworks, and emerging trends</li></ul><p>Security Professionals and Engineers can use <i>Building an Effective Security Program for Distributed Energy Resources and Systems</i> as a reliable resource that is dedicated to the essential topic of security for distributed energy resources and power grids. They will find standards, guidelines, and recommendations from standards organizations, such as ISO, IEC, NIST, IEEE, ENISA, ISA, ISACA, and ISF, conveniently included for reference within chapters.
<p>Part I Understanding Security and Privacy Problem</p> <p>1 Security</p> <p>1.1 Introduction</p> <p>1.2 Smart Grid</p> <p>1.2.1 Traditional Power Grid Architecture</p> <p>1.2.2 Smart Grid Definitions</p> <p>1.2.3 Drivers for Change</p> <p>1.2.4 Smart Grid Communication Infrastructure</p> <p>1.3 Distributed Energy Resources</p> <p>1.3.1 DER Characteristics</p> <p>1.3.2 DER Uses</p> <p>1.3.3 DER Systems</p> <p>1.3.4  Microgrid</p> <p>1.3.5 Virtual Power Plant</p> <p>1.4 Scope of Security and Privacy</p> <p>1.4.1 Security for the Smart Grid</p> <p>1.4.2 Privacy</p> <p>1.4.3 The Need for Security and Privacy</p> <p>1.5 Computing and Information Systems for Business and Industrial Applications</p> <p>1.5.1 Information Systems Classification</p> <p>1.5.2 Information Systems in Power Grids</p> <p>1.5.3 DER Information Systems</p> <p>1.6  Integrated Systems in a Smart Grid</p> <p>1.6.1 Trends</p> <p>1.6.2 Characteristics</p> <p>1.7 Critical Smart Grid Systems</p> <p>1.7.1 Industrial Control Systems</p> <p>1.7.2 SCADA Systems</p> <p>1.7.3 Energy Management Systems</p> <p>1.7.4 Advanced Meter Systems</p> <p>1.8 Standards, Guidelines, and Recommendations</p> <p>1.8.1 Overview of Various Standards</p> <p>1.8.2 Key Standard Attributes and Conformance</p> <p>1.8.3 Smart Grid Standards</p> <p>1.8.3.1 Key Players in Smart Grid Standards Development</p> <p>1.8.3.2 How to Use Standards</p> <p>1.8.4 Cybersecurity Standards</p> <p>2 Advancing Security</p> <p>2.1 Emerging Technologies</p> <p>2.1.1 Internet of Things</p> <p>2.1.1.1 Characteristics of Objects</p> <p>2.1.1.2 Technologies</p> <p>2.1.1.3 IoT Applications</p> <p>2.1.1.4 IoT Security and Privacy</p> <p>2.1.1.5 Challenges</p> <p>2.1.2 Internet of Everything (IoE)</p> <p>2.1.3 Cyber-Physical Systems</p> <p>2.1.4 Cyber-Physical Systems Applications</p> <p>2.2 Cybersecurity</p> <p>2.2.1 Cybersecurity Definitions</p> <p>2.2.2 Understanding Cybersecurity Terms</p> <p>2.2.3 Cybersecurity Evolution</p> <p>2.3 Advancing Cybersecurity</p> <p>2.3.1 Contributing Factors to Cybersecurity Success</p> <p>2.3.2 Advancing Cybersecurity and Privacy Design</p> <p>2.4 Smart Grid Cybersecurity: A Perspective on Comprehensive Characterization</p> <p>2.4.1 Forces Shaping Cybersecurity</p> <p>2.4.2 Smart Grid Trends</p> <p>2.5 Security as a Personal, Organizational, National, and Global Priority</p> <p>2.5.1 Security as Personal Priority</p> <p>2.5.2 Protection of Private Information</p> <p>2.5.3 Protecting Cyberspace as a National Asset</p> <p>2.6 Cybersecurity for Electrical Sector as a National Priority</p> <p>2.6.1  Need for Cybersecurity Solutions</p> <p>2.6.2 The US Plans</p> <p>2.7 The Need for Security and Privacy Programs</p> <p>2.7.1 Security Program</p> <p>2.7.2 Privacy Program</p> <p>2.8 Standards, Guidelines, and Recommendations</p> <p>2.8.1 Electricity Sector Guidance</p> <p>2.8.2 International Collaboration</p> <p>References-Part1</p> <p>Part II Applying Security Principles to Smart Grid</p> <p>3 Principles of Cybersecurity</p> <p>3.1 Introduction</p> <p>3.2 Information Security</p> <p>3.2.1 Terminology</p> <p>3.2.2 Information Security Components</p> <p>3.2.3  Security Principles</p> <p>3.3 Security Related Concepts</p> <p>3.3.1 Basic Security Concepts</p> <p>3.3.2 The Basis for Security</p> <p>3.4 Characteristics of Information</p> <p>3.4.1 Data Transformation</p> <p>3.4.2 Data Characteristics</p> <p>3.4.3 Data Quality</p> <p>3.4.4 Information Quality</p> <p>3.4.5 System Quality</p> <p>3.4.6  Data Quality Characteristics Assigned to Systems</p> <p>3.5 Information Systems Characteristics</p> <p>3.5.1 Software Quality</p> <p>3.5.2 System Quality Attributes</p> <p>3.6 Critical Information Systems</p> <p>3.6.1 Critical Systems Characteristics</p> <p>3.6.2 Information Life Cycle</p> <p>3.6.3 Information Assurance</p> <p>3.6.4 Critical Security Characteristics of Information</p> <p>3.7 Information Security Models</p> <p>3.7.1 Evolving Models</p> <p>3.7.2 RMIAS Model</p> <p>3.7.3 Information Security Goals</p> <p>3.8 Standards, Guidelines, and Recommendations</p> <p>3.8.1 SGIP Catalog of Standards</p> <p>3.8.2 Cybersecurity Standards for Smart Grid</p> <p>4 Applying Security Principles to Smart Grid</p> <p>4.1 Smart Grid Security Goals</p> <p>4.2 DERs Information Security Characteristics</p> <p>4.2.1 Information Classification</p> <p>4.2.2 Information Classification Levels</p> <p>4.2.3 Information Evaluation Criteria</p> <p>4.3 Infrastructure</p> <p>4.3.1 Information Infrastructure</p> <p>4.3.2 Information Assurance Infrastructure</p> <p>4.3.3 Information Management Infrastructure</p> <p>4.3.4 Outsourced Services</p> <p>4.3.5 Information Security Management Infrastructure</p> <p>4.3.6 Cloud Infrastructure</p> <p>4.4 Smart Grid Infrastructure</p> <p>4.4.1 Hierarchical Structures</p> <p>4.4.2 Smart Grid Needs</p> <p>4.4.3 Cyber Infrastructure</p> <p>4.4.4 Smart Grid Technologies</p> <p>4.5 Building an Information Infrastructure for Smart Grid</p> <p>4.5.1 Various Perspectives</p> <p>4.5.2 Challenges and Relevant Approaches</p> <p>4.5.3 Common Employed Infrastructures</p> <p>4.6 IT Systems versus Industrial Control Systems Infrastructure</p> <p>4.6.1 Industrial Control Systems General Concepts</p> <p>4.6.2 Supervisory Control and Data Acquisition Systems (SCADA)</p> <p>4.6.3 Differences and Similarities</p> <p>4.7 Convergence Trends</p> <p>4.8 Standards, Guidelines, and Recommendations</p> <p>5 Planning Security Protection</p> <p>5.1 Threats and Vulnerabilities</p> <p> 5.1.1 Threats Characterization</p> <p>5.1.2 Vulnerabilities Characteristics</p> <p>5.2 Attacks</p> <p>5.2.1 Attacks Categories</p> <p>5.2.2 Reasons for Attack</p> <p>5.3 Energy Sector: Threats, Vulnerabilities, and Attacks Overview</p> <p>5.3.1 Threats</p> <p>5.3.2 Vulnerabilities</p> <p>5.3.3 Energy Sector Attacks</p> <p>5.3.4 Smart Grid Cybersecurity Challenges</p> <p>5.4 Security Controls</p> <p>5.4.1 Security Controls Categories</p> <p>5.4.2 Common Security Controls</p> <p>5.4.3 Applying Security Controls to Smart Grid</p> <p>5.5 Security Training and Skills</p> <p>5.5.1 Education, Training, and Awareness</p> <p>5.5.2 Security Awareness Program</p> <p>5.6 Planning for Security and Privacy</p> <p>5.6.1 Plan Structure</p> <p>5.6.2 Security Team</p> <p>5.7 Legal and Ethical Issues</p> <p>5.8 Standards, Guidelines, and Recommendations</p> <p>References-Part2</p> <p>Part III Security of Critical Infrastructure</p> <p>6 Critical Infrastructure</p> <p>6.1 Introduction</p> <p>6.1.1 Critical Infrastructure</p> <p>6.1.2 Critical Information Infrastructure</p> <p>6.2 Associated Industries with Critical Infrastructure</p> <p>6.2.1 US Critical Sectors</p> <p>6.2.2 Other Countries</p> <p>6.3 Critical Infrastructure Components</p> <p>6.4 Energy Sector</p> <p>6.4.1 Electrical Subsector</p> <p>6.4.2 Smart Grid Infrastructure</p> <p>6.5 Critical Infrastructures Interdependencies</p> <p>6.5.1 Interdependency Dimensions</p> <p>6.5.2 Dependencies</p> <p>6.6 Electrical Power System</p> <p>6.6.1 Electrical Power System Components</p> <p>6.6.2  Electrical Power System Evolution and Challenges</p> <p>6.6.3 Needs</p> <p>6.7 Recent Threats and Vulnerabilities</p> <p>6.7.1  Reported Cyber Attacks</p> <p>6.7.2 ICS/SCADA Incidents and Challenges</p> <p>6.7.2.1 Stuxnet Exploitation</p> <p>6.7.2.2 Exposure to Post Stuxnet Malware in Rise</p> <p>6.7.2.3 Inappropriate Design and Lack of Management</p> <p>6.7.2.4 Safety</p> <p>6.7.3 Equipment Failure</p> <p>6.8 Standards, Guidelines, and Recommendations</p> <p>7 Critical Infrastructure Protection</p> <p>7.1 Critical Infrastructure Attacks and Challenges</p> <p>7.1.1 Power Grid</p> <p>7.1.2 Attacks on Information Technology and Telecommunications</p> <p>7.1.3 Attacks in Manufacturing</p> <p>7.1.4 Defense</p> <p>7.2 The Internet as a Critical Infrastructure</p> <p>7.3 Critical Infrastructure Protection</p> <p>7.3.1 Policies, Laws, and Regulations</p> <p>7.3.2 Protection Issues</p> <p>7.4 Information Security Frameworks</p> <p>7.4.1 NIST Cybersecurity Framework</p> <p>7.4.2 NIST Updated Cybersecurity Framework</p> <p>7.4.3 Generic Framework</p> <p>7.5 NIST Privacy Framework</p> <p>7.6 Addressing Security of Control Systems</p> <p>7.6.1 Challenges</p> <p>7.6.2 Terrorism Challenges</p> <p>7.7 Emerging Technologies and Impacts</p> <p>7.7.1 Control Systems Open to Internet</p> <p>7.7.2 Wireless and Mobile</p> <p>7.7.3 Internet of Things and Internet of Everything</p> <p>7.7.4 WEB Technologies</p> <p>7.7.5 Embedded Systems</p> <p>7.7.6 Cloud Computing</p> <p>7.8 Standards, Guidelines, and Recommendations</p> <p>7.8.1 Department of Homeland Security (DHS)</p> <p>7.8.2 Federal Communications Commission (FCC)</p> <p>7.8.3 National Institute of Standards and Technology (NIST)</p> <p>7.8.4 North American Energy Reliability Corporation (NERC)</p> <p>7.8.5 Federal Regulatory Energy Commission</p> <p>7.8.6 DOE Critical Infrastructure Guidance</p> <p>7.8.7 US-CERT</p> <p>References-Part3</p> <p>Part IV The Characteristics of Smart Grid and DER Systems</p> <p>8 Smart Power Grid</p> <p>8.1 Electric Power System</p> <p>8.1.1 Power System Services</p> <p>8.1.2 Power System Operations</p> <p>8.1.3 Energy Management System Overview</p> <p>8.1.4 Electrical Utilities Evolution</p> <p>8.2 Smart Grid – What it Is?</p> <p>8.2.1 Definitions</p> <p>8.2.2 Vision of the Future Smart Grid</p> <p>8.2.3 Tomorrow’s Utility</p> <p>8.2.4 EMS Upgrades</p> <p>8.2.5 Electricity Trade</p> <p>8.2.6 Trading Capabilities</p> <p>8.3 Smart Grid Characteristics</p> <p>8.3.1 Relevant Characteristics</p> <p>8.3.2 Electrical Infrastructure Evolution</p> <p>8.4 Smart Grid Conceptual Models</p> <p>8.4.1 NIST Conceptual Model</p> <p>8.4.2 IEEE Model</p> <p>8.4.3 European Conceptual Model</p> <p>8.5 Power and Smart Devices</p> <p>8.5.1 Smart Meters</p> <p>8.5.2 Intelligent Electronic Devices</p> <p>8.5.3 Phasor Measurement Units</p> <p>8.5.4 Intelligent Universal Transformers</p> <p>8.6 Examples of Key Technologies and Solutions</p> <p>8.6.1 Communications Networks</p> <p>8.6.2 Integrated Communications</p> <p>8.6.3 Sensor Networks</p> <p>8.6.4 Infrastructure for Transmission and Substations</p> <p>8.6.5 Wireless Technologies</p> <p>8.6.6 Advanced Metering Infrastructure</p> <p>8.7 Networking Challenges</p> <p>8.7.1 Architecture</p> <p>8.7.2 Protocols</p> <p>8.7.2 Constraints</p> <p>8.8 Standards, Guidelines, and Recommendations</p> <p>8.8.1 Smart Grid Interoperability</p> <p>8.8.2 Representative Standards</p> <p>9 Power Systems Characteristics</p> <p>9.1 Analysis of Power Systems</p> <p>9.1.1 Analysis of Basic Characteristics</p> <p>9.1.2 Stability</p> <p>9.1.3 Partial Stability</p> <p>9.2 Analysis of Impacts</p> <p>9.2.1  DERs Impacts</p> <p>9.2.2 Interconnectivity</p> <p>9.3 Reliability</p> <p>9.3.1 Reliable System Characteristics</p> <p>9.3.2 Addressing Reliability</p> <p>9.3.3 Evaluating Reliability</p> <p>9.3.4 ICT Reliability Issues</p> <p>9.3.5 DERs Impacts</p> <p>9.4 Resiliency</p> <p>9.4.1 Increasing Resiliency</p> <p>9.4.2 DERs Opportunities</p> <p>9.5 Addressing Various Issues</p> <p>9.5.1 Addressing Cybersecurity</p> <p>9.5.2 Cyber-Physical System</p> <p>9.5.3 Cyber-Physical Resilience</p> <p>9.5.4 Related Characteristics, Relationships, Differences and Similarities</p> <p>9.6  Power Systems Interoperability</p> <p>9.6.1  Interoperability Dimensions</p> <p>9.6.2 Smart Grid Interoperability</p> <p>9.6.3 Interoperability Framework</p> <p>9.6.6 Addressing Cross-Cutting Issues</p> <p>9.7 Smart Grid Interoperability Challenges</p> <p>9.8 Standards, Guidelines, and Recommendations</p> <p>9.8.1 ISO/IEC Standards</p> <p>9.8.2 IEEE Standards</p> <p>10 Distributed Energy Systems</p> <p>10.1 Introduction</p> <p>10.1.1 Distributed Energy</p> <p>10.2 Distributed Energy Resources</p> <p>10.2.1 Energy Storage Technologies</p> <p>10.2.2 Electric Vehicles</p> <p>10.2.3 Distributed Energy Resource Systems</p> <p>10.2.4 Electrical Energy Storage Systems</p> <p>10.2.5 Virtual Power Plant</p> <p>10.3 DER Applications and Security</p> <p>10.3.1 Energy Storage Applications</p> <p>10.3.2  Microgrid</p> <p>10.4 Smart Grid Security Goals</p> <p>10.4.1 Cybersecurity</p> <p>10.4.2 Reliability and Security</p> <p>10.4.3 DER Security Challenges</p> <p>10.5  Security Governance in Energy Industry</p> <p>10.5.1 Security Governance Overview</p> <p>10.5.2 Information Governance</p> <p>10.5.3 EAC Recommendations</p> <p>10.5.4 Establishing Information Security Governance</p> <p>10.5.5 Governance for Building Security In</p> <p>10.6  What Kind of Threats and Vulnerabilities?</p> <p>10.6.1 Threats</p> <p>10.6.2 Reported Cyber Incidents</p> <p>10.6.3 Vulnerabilities</p> <p>10.6.4 ICS Reported Vulnerabilities</p> <p>10.6.5  Addressing Privacy Issues</p> <p>10.7 Examples of Smart Grid Applications</p> <p>10.7.1 Smart Grid Expectations</p> <p>10.7.2 Demand Response Management Systems (DRMS)</p> <p>10.7.3 Distribution Automation</p> <p>10.7.4 Advanced Distribution Management System</p> <p>10.7.5 Smart Home</p> <p>10.7.6 Smart Microgrid</p> <p>10.8 Standards, Guidelines, and Recommendations</p> <p>10.8.1 NIST Roadmap, Standards, and Guidelines</p> <p>10.8.2 NERC CIP Standards</p> <p>10.8.3 Security Standards Governance</p> <p>References-Part4</p> <p>Part V Security Program Management</p> <p>11 Security Management</p> <p>11.1 Security Management Overview</p> <p>11.1.1 Information Security</p> <p>11.1.2 Security Management Components</p> <p>11.1.3 Management Tasks</p> <p>11.2 Security Program</p> <p>11.2.1 Security Program Functions</p> <p>11.2.2 Building a Security Program: Which Approach?</p> <p>11.2.3  Security Management Process</p> <p>11.3 Asset Management</p> <p>11.3.1 Asset Management for Power System</p> <p>11.3.2 Asset Management Perspectives</p> <p>11.3.3 Benefits of Asset Management</p> <p>11.3.3.1 DER Assets Classification</p> <p>11.3.3.2 DER Asset Data</p> <p>11.3.3.3 Asset Management Analytics</p> <p>11.3.3.4 Applications</p> <p>11.3.3.5 Asset Management Metrics</p> <p>11.3.3.6 Asset Management Services</p> <p>11.4 Physical Security and Safety</p> <p>11.4.1 Physical Security Measures</p> <p>11.4.2 Physical Security Evolution</p> <p>11.4.3 Human Resources and Public Safety</p> <p>11.5 Human and Technology Relationship</p> <p>11.5.1 Use Impacts</p> <p>11.5.2 DER Systems Challenges</p> <p>11.5.3  Security vs. Safety</p> <p>11.6 Information Security Management</p> <p>11.6.1 Information Security Management Infrastructure</p> <p>11.6.2 Enterprise Security Model</p> <p>11.6.3 Cycle of the Continuous Information Security Process</p> <p>11.6.4 Information Security Process for Smart Grid</p> <p>11.6.5  Systems Engineering and Processes</p> <p>11.7 Models and Frameworks for Information Security Management</p> <p>11.7.1  ISMS Models</p> <p>11.7.2 Information Security Management Maturity Model (ISM3) Model</p> <p>11.7.3 BMIS Model</p> <p>11.7.4 Systems Security Engineering - Capability Maturity Model (SSE-CMM)</p> <p>11.7.5 Standard of Good Practice (SoGP)</p> <p>11.7.6 Examples of Other Frameworks</p> <p>11.7.7 Combining Models, Frameworks, Standards, and Best Practices</p> <p>11.8 Standards, Guidelines, and Recommendations</p> <p>12 Security Management for Smart Grid Systems</p> <p>12.1 Strategic, Tactical, and Operational Security Management</p> <p>12.1.1 Unified View of Smart Grid Systems</p> <p>12.1.2 Organizational Security Model</p> <p>12.2 Security as Business Issue</p> <p>12.2.1 Strategic Management</p> <p>12.2.2 Tactical Management</p> <p>12.2.3 Operational Management</p> <p>12.3 Systemic Security Management</p> <p>12.3.1 Comparison and Discussion of Models</p> <p>12.3.2 Efficient and Effective Management Solutions</p> <p>12.3.3 Means for Improvement</p> <p>12.4 Security Model for Electrical Sector</p> <p>12.4.1 Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2)</p> <p>12.4.2 Which Guidance and Recommendations Apply to Electrical Sector?</p> <p>12.4.3 Implementing ISMS</p> <p>12.4.4 NIST Framework</p> <p>12.4.5 Blueprints</p> <p>12.4.6 Control Systems</p> <p>12.5 Achieving Security Governance</p> <p>12.5.1  Security Strategy Principles</p> <p>12.5.2  Governance Definitions and Developments</p> <p>12.5.3 Information Security Governance</p> <p>12.5.4 Implementation Challenges</p> <p>12.5.5 Responsibilities and Roles</p> <p>12.5.6  Governance Model</p> <p>12.6 Ensuring Information Assurance</p> <p>12.6.1 NIST SP800-55</p> <p>12.6.2 ISO/IEC 27004</p> <p>12.7 Certification and Accreditation</p> <p>12.7.1 Common Criteria</p> <p>12.7.2 ISO/IEC 27001</p> <p>12.7.3 ISMS Accreditation</p> <p>12.8 Standards, Guidelines, and Recommendations</p> <p>12.8.1 ISO/IEC Standards</p> <p>12.8.2 ISA Standards</p> <p>12.8.3 National Institute of Standards and Technology (NIST)</p> <p>12.8.4 Internet Engineering Task Force (IETF)</p> <p>12.8.5 ISF Standards</p> <p>12.8.6 European Union Agency for Network and Information Security Guidelines</p> <p>12.8.7 Information Assurance for Small Medium Enterprise (IASME)</p> <p>References-Part5</p> <p>Appendix A Cybersecurity</p> <p>Appendix B Power</p> <p>Appendix C Critical Infrastructures and Energy Infrastructure</p> <p>Appendix D Smart Grid – Policy, Concepts, and Technologies</p> <p>Appendix J Acronyms</p> <p>Index</p>
<p><b>Mariana Hentea</b> earned her PhD and MS in Computer Science , MS in Computer Engineering, and BS in Electrical Engineering. Her research is focused on Smart Grid and DER systems, real-time systems security and performance, network security design and architecture, and use of Artificial Intelligence techniques for information security management, security risk management, network management, and process control. As a member of IEEE Standards Association, she promotes Security and Privacy awareness to Engineers, managers, regulators, and consumers. She is a member of IEEE Smart Grid, IEEE Power & Energy Society, IEEE Computer Society, ISC2 and ISSA organizations. Dr. Hentea holds a CISSP certification from ISC2.</p>
<p><b>Build a critical and effective security program for DERs</b></p><p><i>Building an Effective Security Program for Distributed Energy Resources and Systems</i> requires a unified approach to establishing a critical security program for DER systems and Smart Grid applications. The methodology provided integrates systems security engineering principles, techniques, standards, and best practices.</p><p>This publication introduces engineers on the design, implementation, and maintenance of a security program for distributed energy resources (DERs), smart grid, and industrial control systems. It provides security professionals with understanding the specific requirements of industrial control systems and real-time constrained applications for power systems. This book:</p><ul><li>Describes the cybersecurity needs for DERs and power grid as critical infrastructure</li><li>Introduces the information security principles to assess and manage the security and privacy risks of the emerging Smart Grid technologies</li><li>Outlines the functions of the security program as well as the scope and differences between traditional IT system security requirements and those required for industrial control systems such as SCADA systems</li><li>Offers a full array of resources— cybersecurity concepts, frameworks, and emerging trends</li></ul><p>Security Professionals and Engineers can use <i>Building an Effective Security Program for Distributed Energy Resources and Systems</i> as a reliable resource that is dedicated to the essential topic of security for distributed energy resources and power grids. They will find standards, guidelines, and recommendations from standards organizations, such as ISO, IEC, NIST, IEEE, ENISA, ISA, ISACA, and ISF, conveniently included for reference within chapters.</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €