Details

Nonlinear Polymer Rheology


Nonlinear Polymer Rheology

Macroscopic Phenomenology and Molecular Foundation
1. Aufl.

von: Shi-Qing Wang

160,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 02.01.2018
ISBN/EAN: 9781119029045
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Integrating latest research results and characterization techniques, this book helps readers understand and apply fundamental principles in nonlinear polymer rheology. The author connects the basic theoretical framework with practical polymer processing, which aids practicing scientists and engineers to go beyond the existing knowledge and explore new applications. Although it is not written as a textbook, the content can be used in an upper undergraduate and first year graduate course on polymer rheology.<br /><br />•    Describes the emerging phenomena and associated conceptual understanding in the field of nonlinear polymer rheology<br />•    Incorporates details on latest experimental discoveries and provides new methodology for research in polymer rheology<br />•    Integrates latest research results and new characterization techniques like particle tracking velocimetric method <br />•    Focuses on the issues concerning the conceptual and phenomenological foundations for polymer rheology<br />•   Has a companion website for readers to access with videos complementing the content within several chapters
<p>Preface xv</p> <p>Acknowledgments xix</p> <p>Introduction xxi</p> <p>About the Companion Website xxxi</p> <p><b>Part I Linear Viscoelasticity and Experimental Methods </b><b>1</b></p> <p><b>1 Phenomenological Description of Linear Viscoelasticity </b><b>3</b></p> <p>1.1 Basic Modes of Deformation 3</p> <p>1.1.1 Startup shear 4</p> <p>1.1.2 Step Strain and Shear Cessation from Steady State 5</p> <p>1.1.3 Dynamic or Oscillatory Shear 5</p> <p>1.2 Linear Responses 5</p> <p>1.2.1 Elastic Hookean Solids 6</p> <p>1.2.2 Viscous Newtonian Liquids 6</p> <p>1.2.3 Viscoelastic Responses 7</p> <p>1.2.3.1 Boltzmann Superposition Principle for Linear Response 7</p> <p>1.2.3.2 General Material Functions in Oscillatory Shear 8</p> <p>1.2.3.3 Stress Relaxation from Step Strain or Steady-State Shear 8</p> <p>1.2.4 Maxwell Model for Viscoelastic Liquids 8</p> <p>1.2.4.1 Stress Relaxation from Step Strain 9</p> <p>1.2.4.2 Startup Deformation 10</p> <p>1.2.4.3 Oscillatory (Dynamic) Shear 11</p> <p>1.2.5 General Features of Viscoelastic Liquids 12</p> <p>1.2.5.1 Generalized Maxwell Model 12</p> <p>1.2.5.2 Lack of Linear Response in Small Step Strain: A Dilemma 13</p> <p>1.2.6 Kelvin–Voigt Model for Viscoelastic Solids 14</p> <p>1.2.6.1 Creep Experiment 15</p> <p>1.2.6.2 Strain Recovery in Stress-Free State 15</p> <p>1.2.7 Weissenberg Number and Yielding during Linear Response 16</p> <p>1.3 Classical Rubber Elasticity Theory 17</p> <p>1.3.1 Chain Conformational Entropy and Elastic Force 17</p> <p>1.3.2 Network Elasticity and Stress–Strain Relation 18</p> <p>1.3.3 Alternative Expression in terms of Retraction Force and Areal Strand Density 20</p> <p>References 21</p> <p><b>2 Molecular Characterization in Linear Viscoelastic Regime </b><b>23</b></p> <p>2.1 Dilute Limit 23</p> <p>2.1.1 Viscosity of Einstein Suspensions 23</p> <p>2.1.2 Kirkwood–Riseman Model 24</p> <p>2.1.3 Zimm Model 24</p> <p>2.1.4 Rouse Bead-Spring Model 25</p> <p>2.1.4.1 Stokes Law of Frictional Force of a Solid Sphere (Bead) 26</p> <p>2.1.4.2 Brownian Motion and Stokes–Einstein Formula for Solid Particles 26</p> <p>2.1.4.3 Equations of Motion and Rouse Relaxation Time τR27</p> <p>2.1.4.4 Rouse Dynamics for Unentangled Melts 28</p> <p>2.1.5 Relationship between Diffusion and Relaxation Time 29</p> <p>2.2 Entangled State 30</p> <p>2.2.1 Phenomenological Evidence of chain Entanglement 30</p> <p>2.2.1.1 Elastic Recovery Phenomenon 30</p> <p>2.2.1.2 Rubbery Plateau in Creep Compliance 31</p> <p>2.2.1.3 Stress Relaxation 32</p> <p>2.2.1.4 Elastic Plateau in Storage Modulus G’ 32</p> <p>2.2.2 Transient Network Models 34</p> <p>2.2.3 Models Depicting Onset of Chain Entanglement 35</p> <p>2.2.3.1 Packing Model 35</p> <p>2.2.3.2 Percolation Model 38</p> <p>2.3 Molecular-Level Descriptions of Entanglement Dynamics 39</p> <p>2.3.1 Reptation Idea of de Gennes 39</p> <p>2.3.2 Tube Model of Doi and Edwards 41</p> <p>2.3.3 Polymer-Mode-Coupling Theory of Schweizer 43</p> <p>2.3.4 Self-diffusion Constant versus Zero-shear Viscosity 44</p> <p>2.3.5 Entangled Solutions 46</p> <p>2.4 Temperature Dependence 47</p> <p>2.4.1 Time–Temperature Equivalence 47</p> <p>2.4.2 Thermo-rheological Complexity 48</p> <p>2.4.3 Segmental Friction and Terminal Relaxation Dynamics 49</p> <p>References 50</p> <p><b>3 Experimental Methods </b><b>55</b></p> <p>3.1 Shear Rheometry 55</p> <p>3.1.1 Shear by Linear Displacement 55</p> <p>3.1.2 Shear in Rotational Device 56</p> <p>3.1.2.1 Cone-Plate Assembly 56</p> <p>3.1.2.2 Parallel Disks 57</p> <p>3.1.2.3 Circular Couette Apparatus 58</p> <p>3.1.3 Pressure-Driven Apparatus 59</p> <p>3.1.3.1 Capillary Die 60</p> <p>3.1.3.2 Channel Slit 61</p> <p>3.2 Extensional Rheometry 63</p> <p>3.2.1 Basic Definitions of Strain and Stress 63</p> <p>3.2.2 Three Types of Devices 64</p> <p>3.2.2.1 Instron Stretcher 64</p> <p>3.2.2.2 Meissner-Like Sentmanat Extensional Rheometer 65</p> <p>3.2.2.3 Filament Stretching Rheometer 65</p> <p>3.3 <i>In Situ </i>Rheostructural Methods 66</p> <p>3.3.1 Flow Birefringence 66</p> <p>3.3.1.1 Stress Optical Rule 67</p> <p>3.3.1.2 Breakdown of Stress-Optical Rule 68</p> <p>3.3.2 Scattering (X-Ray, Light, Neutron) 69</p> <p>3.3.3 Spectroscopy (NMR, Fluorescence, IR, Raman, Dielectric) 69</p> <p>3.3.4 Microrheology and Microscopic Force Probes 69</p> <p>3.4 Advanced Rheometric Methods 69</p> <p>3.4.1 Superposition of Small-Amplitude Oscillatory Shear and Small Step Strain during Steady Continuous Shear 69</p> <p>3.4.2 Rate or Stress Switching Multistep Platform 70</p> <p>3.5 Conclusion 70</p> <p>References 71</p> <p><b>4 Characterization of Deformation Field Using Different Methods </b><b>75</b></p> <p>4.1 Basic Features in Simple Shear 75</p> <p>4.1.1 Working Principle for Strain-Controlled Rheometry: Homogeneous Shear 75</p> <p>4.1.2 Stress-Controlled Shear 76</p> <p>4.2 Yield Stress in Bingham-Type (Yield-Stress) Fluids 77</p> <p>4.3 Cases of Homogeneous Shear 79</p> <p>4.4 Particle-Tracking Velocimetry (PTV) 79</p> <p>4.4.1 Simple Shear 80</p> <p>4.4.1.1 Velocities in XZ-Plane 80</p> <p>4.4.1.2 Deformation Field in XY Plane 80</p> <p>4.4.2 Channel Flow 82</p> <p>4.4.3 Other Geometries 83</p> <p>4.5 Single-Molecule Imaging Velocimetry 83</p> <p>4.6 Other Visualization Methods 83</p> <p>References 84</p> <p><b>5 Improved and Other Rheometric Apparatuses </b><b>87</b></p> <p>5.1 Linearly Displaced Cocylinder Sliding for Simple Shear 88</p> <p>5.2 Cone-Partitioned Plate (CPP) for Rotational Shear 88</p> <p>5.3 Other Forms of Large Deformation 91</p> <p>5.3.1 Deformation at Converging Die Entry 91</p> <p>5.3.2 One-Dimensional Squeezing 92</p> <p>5.3.3 Planar Extension 95</p> <p>5.4 Conclusion 96</p> <p>References 97</p> <p><b>Part II Yielding – Primary Nonlinear Responses to Ongoing Deformation </b><b>99</b></p> <p><b>6 Wall Slip – Interfacial Chain Disentanglement </b><b>103</b></p> <p>6.1 Basic Notions of Wall Slip in Steady Shear 104</p> <p>6.1.1 Slip Velocity V<sub>s</sub> and Navier–de Gennes Extrapolation Length <i>b </i>104</p> <p>6.1.2 Correction of Shear Field due to Wall Slip 105</p> <p>6.1.3 Complete Slip and Maximum Value for <i>b </i>106</p> <p>6.2 Stick–Slip Transition in Controlled-Stress Mode 108</p> <p>6.2.1 Stick–Slip Transition in Capillary Extrusion 108</p> <p>6.2.1.1 Analytical Description 108</p> <p>6.2.1.2 Experimental Data 109</p> <p>6.2.2 Stick–Slip Transition in Simple Shear 111</p> <p>6.2.3 Limiting Slip Velocity V<sup>∗</sup><sub>s</sub> for Different Polymer Melts 113</p> <p>6.2.4 Characteristics of Interfacial Slip Layer 116</p> <p>6.3 Wall Slip during Startup Shear – Interfacial Yielding 116</p> <p>6.3.1 Theoretical Discussions 117</p> <p>6.3.2 Experimental Data 118</p> <p>6.4 Relationship between Slip and Bulk Shear Deformation 120</p> <p>6.4.1 Transition from Wall Slip to Bulk Nonlinear Response: Theoretical Analysis 120</p> <p>6.4.2 Experimental Evidence of Stress Plateau Associated with Wall Slip 122</p> <p>6.4.2.1 A Case Based on Entangled DNA Solutions 122</p> <p>6.4.2.2 Entangled Polybutadiene Solutions in Small Gap Distance H∼50 μm 123</p> <p>6.4.2.3 Verification of Theoretical Relation by Experiment 126</p> <p>6.4.3 Influence of Shear Thinning on Slip 127</p> <p>6.4.4 Gap Dependence and Independence 128</p> <p>6.5 Molecular Evidence of Disentanglement during Wall Slip 131</p> <p>6.6 Uncertainties in Boundary Condition 134</p> <p>6.6.1 Oscillations between Entanglement and Disentanglement Under Constant Speed 134</p> <p>6.6.2 Oscillations between Stick and Slip under Constant Pressure 134</p> <p>6.7 Conclusion 134</p> <p>References 135</p> <p><b>7 Yielding during Startup Deformation: From Elastic Deformation to Flow </b>139</p> <p>7.1 Yielding at <i>Wi<</i>1 and Steady Shear Thinning at <i>Wi></i>1 140</p> <p>7.1.1 Elastic Deformation and Yielding for <i>Wi<</i>1 140</p> <p>7.1.2 Steady Shear Rheology: Shear Thinning 141</p> <p>7.2 Stress Overshoot in Fast Startup Shear 143</p> <p>7.2.1 Scaling Characteristics of Shear Stress Overshoot 144</p> <p>7.2.1.1 Viscoelastic Regime (<i>Wi</i><sub>R </sub><i><</i>1) 145</p> <p>7.2.1.2 Elastic Deformation (Scaling) Regime (<i>Wi</i><sub>R </sub><i>></i>1) 145</p> <p>7.2.1.3 Contrast between Two Different Regimes 148</p> <p>7.2.2 Elastic Recoil from Startup Shear: Evidence of Yielding 149</p> <p>7.2.2.1 Elastic Recoil for <i>Wi</i><sub>R </sub><i>></i>1 149</p> <p>7.2.2.2 Irrecoverable Shear at <i>Wi</i><sub>R </sub><i><</i>1 149</p> <p>7.2.3 More Evidence of Yielding at Overshoot Based on Rate-Switching Tests 153</p> <p>7.3 Nature of Steady Shear 154</p> <p>7.3.1 Superposition of Small-Amplitude Oscillatory Shear onto Steady-State Shear 155</p> <p>7.3.2 Two Other Methods to Probe Steady Shear 157</p> <p>7.4 From Terminal Flow to Fast Flow under Creep: Entanglement–Disentanglement Transition 159</p> <p>7.5 Yielding in Startup Uniaxial Extension 163</p> <p>7.5.1 Myth with Considère Criterion 163</p> <p>7.5.2 Tensile Force (Engineering Stress) versus True Stress 164</p> <p>7.5.3 Tensile Force Maximum: A Signature of Yielding in Extension 165</p> <p>7.5.3.1 Terminal Flow (<i>Wi<</i>1) 166</p> <p>7.5.3.2 Yielding Evidenced by Decline in σ<sub>engr</sub> 167</p> <p>7.5.3.3 Maxwell-Like Response and Scaling for <i>Wi</i><sub>R </sub><i>></i>1 170</p> <p>7.5.3.4 Elastic Recoil 173</p> <p>7.6 Conclusion 175</p> <p>7.A Experimental Estimates of Rouse Relaxation Time 175</p> <p>7.A.1 From Self-Diffusion 175</p> <p>7.A.2 From Zero-Shear Viscosity 176</p> <p>7.A.3 From Reptation (Terminal Relaxation) Time τ<sub>d</sub> 176</p> <p>7.A.4 From Second Crossover Frequency∼1/τ<sub>e</sub> 176</p> <p>References 176</p> <p><b>8 Strain Hardening in Extension </b>181</p> <p>8.1 Conceptual Pictures 181</p> <p>8.2 Origin of “Strain Hardening” 184</p> <p>8.2.1 Simple Illustration of Geometric Condensation Effect 184</p> <p>8.2.2 “Strain Hardening” of Polymer Melts with Long-Chain Branching and Solutions 185</p> <p>8.2.2.1 Melts with LCB 185</p> <p>8.2.2.2 Entangled Solutions of Linear Chains 187</p> <p>8.3 True Strain Hardening in Uniaxial Extension: Non-Gaussian Stretching from Finite Extensibility 188</p> <p>8.4 Different Responses of Entanglement to Startup Extension and Shear 190</p> <p>8.5 Conclusion 190</p> <p>8.A Conceptual and Mathematical Accounts of Geometric Condensation 191</p> <p>References 192</p> <p><b>9 Shear Banding in Startup and Oscillatory Shear: Particle-Tracking Velocimetry </b><b>195</b></p> <p>9.1 Shear Banding After Overshoot in Startup Shear 197</p> <p>9.1.1 Brief Historical Background 197</p> <p>9.1.2 Relevant Factors 198</p> <p>9.1.2.1 Sample Requirements: Well Entangled, with Long Reptation Time and Low Polydispersity 198</p> <p>9.1.2.2 Controlling Slip Velocity 199</p> <p>9.1.2.3 Edge Effects 199</p> <p>9.1.2.4 Absence of Shear Banding for <i>b</i>/H<i>≪</i>1 201</p> <p>9.1.2.5 Disappearance of Shear Banding at High Shear Rates 202</p> <p>9.1.2.6 Avoiding Shear Banding with Rate Ramp-Up 202</p> <p>9.1.3 Shear Banding in Conventional Rheometric Devices 203</p> <p>9.1.3.1 Shear Banding in Entangled DNA Solutions 203</p> <p>9.1.3.2 Transient and Steady Shear Banding of Entangled 1,4-Polybutadiene Solutions 204</p> <p>9.1.4 From Wall Slip to Shear Banding in Small Gap Distance 208</p> <p>9.2 Overcoming Wall Slip during Startup Shear 209</p> <p>9.2.1 Strategy Based on Choice of Solvent Viscosity 209</p> <p>9.2.2 Negligible Slip Correction at High <i>Wi</i><sub>app</sub> 213</p> <p>9.2.3 Summary on Shear Banding 213</p> <p>9.3 Nonlinearity and Shear Banding in Large-Amplitude Oscillatory Shear 214</p> <p>9.3.1 Strain Softening 214</p> <p>9.3.2 Wave Distortion 215</p> <p>9.3.3 Shear Banding 215</p> <p>References 217</p> <p><b>10 Strain Localization in Extrusion, Squeezing Planar Extension: PTV Observations </b><b>221</b></p> <p>10.1 Capillary Rheometry in Rate-Controlled Mode 221</p> <p>10.1.1 Steady-State Characteristics 221</p> <p>10.1.2 Transient Behavior 223</p> <p>10.1.2.1 Pressure Oscillation and Hysteresis 223</p> <p>10.1.2.2 Input vs. Throughput, Entry Pressure Loss and Yielding 224</p> <p>10.2 Instabilities at Die Entry 226</p> <p>10.2.1 Vortex Formation vs. Shear Banding 226</p> <p>10.2.2 Stagnation at Corners and Internal Slip 227</p> <p>10.3 Squeezing Deformation 230</p> <p>10.4 Planar Extension 233</p> <p>References 233</p> <p><b>11 Strain Localization and Failure during Startup Uniaxial Extension </b><b>235</b></p> <p>11.1 Tensile-Like Failure (Decohesion) at Low Rates 237</p> <p>11.2 Shear Yielding and Necking-Like Strain Localization at High Rates 239</p> <p>11.2.1 Shear Yielding 239</p> <p>11.2.2 Constant Normalized Engineering Stress at the Onset of Strain Localization 243</p> <p>11.3 Rupture-Like Breakup: Where Are Yielding and Disentanglement? 245</p> <p>11.4 Strain Localization Versus Steady Flow: Sentmanat Extensional Rheometry Versus Filament-Stretching Rheometry 247</p> <p>11.5 Role of Long-Chain Branching 250</p> <p>11.A Analogy between Capillary Rheometry and Filament-Stretching Rheometry 250</p> <p>References 251</p> <p><b>Part III Decohesion and Elastic Yielding After Large Deformation </b><b>255</b></p> <p><b>12 Nonquiescent Stress Relaxation and Elastic Yielding in Stepwise Shear </b><b>257</b></p> <p>12.1 Strain Softening After Large Step Strain 258</p> <p>12.1.1 Phenomenology 258</p> <p>12.1.2 Tube Model Interpretation 261</p> <p>12.1.2.1 Normal Doi–Edwards Behavior 261</p> <p>12.1.2.2 Type C Ultra-strain-softening 262</p> <p>12.2 Particle Tracking Velocimetry Revelation of Localized Elastic Yielding 265</p> <p>12.2.1 Nonquiescent Relaxation in Polymer Solutions 266</p> <p>12.2.1.1 Elastic Yielding in Polybutadiene Solutions 266</p> <p>12.2.1.2 Suppression of Breakup by Reduction in Extrapolation Length b 269</p> <p>12.2.1.3 Nonquiescent Relaxation in Polystyrene Solutions 269</p> <p>12.2.1.4 Strain Localization in the Absence of Edge Instability 270</p> <p>12.2.2 Nonquiescent Relaxation in Styrene–Butadiene Rubbers 272</p> <p>12.2.2.1 Induction Time and Molecular Weight Dependence 273</p> <p>12.2.2.2 Severe Shear Banding before Shear Cessation and Immediate Breakup 275</p> <p>12.2.2.3 Rate Dependence of Elastic Breakup 275</p> <p>12.2.2.4 Unconventional “Step Strain” Produced at <i>Wi</i><sub>R </sub><i><</i>1 278</p> <p>12.3 Quiescent and Uniform Elastic Yielding 279</p> <p>12.3.1 General Comments 279</p> <p>12.3.2 Condition for Uniform Yielding and Quiescent Stress Relaxation 280</p> <p>12.3.3 Homogeneous Elastic Yielding Probed by Sequential Shearing 281</p> <p>12.4 Arrested Wall Slip: Elastic Yielding at Interfaces 283</p> <p>12.4.1 Entangled Solutions 283</p> <p>12.4.2 Entangled Melts 283</p> <p>12.5 Conclusion 286</p> <p>References 287</p> <p><b>13 Elastic Breakup in Stepwise Uniaxial Extension </b>291</p> <p>13.1 Rupture-Like Failure during Relaxation at Small Magnitude or Low Extension Rate (<i>Wi</i><sub>R </sub><i><</i>1) 292</p> <p>13.1.1 Small Magnitude (ε ∼ 1) 292</p> <p>13.1.2 Low Rates Satisfying <i>Wi</i><sub>R </sub><i><</i>1 292</p> <p>13.2 Shear-Yielding-Induced Failure upon Fast Large Step Extension (<i>Wi</i><sub>R </sub><i>></i>1) 293</p> <p>13.3 Nature of Elastic Breakup Probed by Infrared Thermal-Imaging Measurements 297</p> <p>13.4 Primitive Phenomenological Explanations 298</p> <p>13.5 Step Squeeze and Planar Extension 299</p> <p>References 299</p> <p><b>14 Finite Cohesion and Role of Chain Architecture </b><b>301</b></p> <p>14.1 Cohesive Strength of an Entanglement Network 302</p> <p>14.2 Enhancing the Cohesion Barrier: Long-Chain Branching Hinders Structural Breakup 306</p> <p>References 308</p> <p><b>Part IV Emerging Conceptual Framework and Beyond </b><b>311</b></p> <p><b>15 Homogeneous Entanglement </b><b>313</b></p> <p>15.1 What Is Chain Entanglement? 313</p> <p>15.2 When, How, and Why Disentanglement Occurs? 315</p> <p>15.3 Criterion for Homogeneous Shear 316</p> <p>15.4 Constitutive Nonmonotonicity 318</p> <p>15.5 Metastable Nature of Shear Banding 319</p> <p>References 322</p> <p><b>16 Molecular Networks as the Conceptual Foundation </b>325</p> <p>16.1 Introduction: The Tube Model and its Predictions 326</p> <p>16.1.1 Basic Starting Points of the Tube Model 327</p> <p>16.1.2 Rouse Chain Retraction 328</p> <p>16.1.3 Nonmonotonicity due to Rouse Chain Retraction 328</p> <p>16.1.3.1 Absence of Linear Response to Step Strain 328</p> <p>16.1.3.2 Stress Overshoot upon Startup Shear 329</p> <p>16.1.3.3 Strain Softening: Damping Function for Stress Relaxation 330</p> <p>16.1.3.4 Excessive Shear Thinning: The Symptom of Shear Stress Maximum 331</p> <p>16.1.3.5 Anticipation of Necking Based on Considère Criterion 332</p> <p>16.1.4 How to Test the Tube Model 332</p> <p>16.2 Essential Ingredients for a New Molecular Model 333</p> <p>16.2.1 Intrachain Elastic Retraction Force 334</p> <p>16.2.2 Intermolecular Grip Force (IGF) 335</p> <p>16.2.3 Entanglement (Cohesion) Force Arising from Entropic Barrier: Finite Cohesion 336</p> <p>16.2.3.1 Scaling Analysis 337</p> <p>16.2.3.2 Threshold for decohesion 338</p> <p>16.3 Overcoming Finite Cohesion after Step Deformation: Quiescent or Not 339</p> <p>16.3.1 Nonquiescence from Severe Elastic Yielding 339</p> <p>16.3.1.1 With <i>Wi</i><sub>R </sub><i>></i>1 339</p> <p>16.3.1.2 With <i>Wi</i>R<i>≪</i>1 340</p> <p>16.3.2 Homogeneous Elastic Yielding: Quiescent Relaxation 340</p> <p>16.4 Forced Microscopic Yielding during Startup Deformation: Stress Overshoot 341</p> <p>16.4.1 Chain Disentanglement for <i>Wi</i><sub>R </sub><i><</i>1 341</p> <p>16.4.2 Molecular Force Imbalance and Scaling for <i>Wi</i><sub>R </sub><i>></i>1 342</p> <p>16.4.3 Yielding is a Universal Response: Maximum Engineering Stress 346</p> <p>16.5 Interfacial Yielding via Disentanglement 346</p> <p>16.6 Effect of Long-Chain Branching 347</p> <p>16.7 Decohesion in Startup Creep: Entanglement–Disentanglement Transition 349</p> <p>16.8 Emerging Microscopic Theory of Sussman and Schweizer 350</p> <p>16.9 Further Tests to Reveal the Nature of Responses to Large Deformation 351</p> <p>16.9.1 Molecular Dynamics Simulations 352</p> <p>16.9.2 Small Angle Neutron Scattering Measurements 353</p> <p>16.9.2.1 Melt Extension at <i>Wi</i>R<i>≪</i>1 353</p> <p>16.9.2.2 Step Melt Extension With <i>Wi</i><sub>R </sub><i>></i>1 354</p> <p>16.10 Conclusion 354</p> <p>References 355</p> <p><b>17 “Anomalous” Phenomena </b><b>361</b></p> <p>17.1 Essence of Rheometric Measurements: Isothermal Condition 361</p> <p>17.1.1 Heat Transfer in Simple Shear 362</p> <p>17.1.2 Heat Transfer in Uniaxial Extension 364</p> <p>17.2 Internal Energy Buildup with and without Non-Gaussian Extension 366</p> <p>17.3 Breakdown of Time–Temperature Superposition (TTS) during Transient Response 368</p> <p>17.3.1 Time–Temperature Superposition in Polystyrene Solutions and Styrene–Butadiene Rubbers: Linear Response 368</p> <p>17.3.2 Failure of Time–Temperature Superposition: Solutions and Melts 369</p> <p>17.3.2.1 Entangled Polymer Solutions Undergoing Startup Shear 369</p> <p>17.3.2.2 Entangled Polymer Melts during Startup Extension 370</p> <p>17.4 Strain Hardening in Simple Shear of Some Polymer Solutions 372</p> <p>17.5 Lack of Universal Nonlinear Responses: Solutions versus Melts 374</p> <p>17.6 Emergence of Transient Glassy Responses 378</p> <p>References 380</p> <p><b>18 Difficulties with Orthodox Paradigms </b><b>385</b></p> <p>18.1 Tube Model Does Not Predict Key Experimental Features 385</p> <p>18.1.1 Unexpected Failure at <i>Wi</i>R<i>≪</i>1 387</p> <p>18.1.2 Elastic Yielding Can Lead to Nonquiescent Relaxation 387</p> <p>18.1.3 Meaning of Maximum in Tensile Force (Engineering Stress) 388</p> <p>18.1.4 Other Examples of Causality Reversal 389</p> <p>18.1.5 Entanglement–Disentanglement Transition 390</p> <p>18.1.6 Anomalies Are the Norm 390</p> <p>18.2 Confusion About Local and Global Deformations 391</p> <p>18.2.1 Lack of Steady Flow in Startup Melt Extension 391</p> <p>18.2.2 Peculiar Protocol to Observe Stress Relaxation from Step Extension 392</p> <p>18.3 Molecular Network Paradigm 392</p> <p>18.3.1 Startup Deformation 392</p> <p>18.3.2 Stepwise Deformation 393</p> <p>References 394</p> <p><b>19 Strain Localization and Fluid Mechanics of Entangled Polymers </b><b>397</b></p> <p>19.1 Relationship between Wall Slip and Banding: A Rheological-State Diagram 398</p> <p>19.2 Modeling of Entangled Polymeric Liquids by Continuum Fluid Mechanics 399</p> <p>19.3 Challenges in Polymer Processing 400</p> <p>19.3.1 Extrudate Distortions 401</p> <p>19.3.1.1 Sharkskin Melt Fracture (Due to Exit Boundary Discontinuity) 401</p> <p>19.3.1.2 Gross (Melt Fracture) Extrudate Distortions Due to Entry Instability 403</p> <p>19.3.1.3 Another Example Showing Pressure Oscillation and Stick–Slip Transition 403</p> <p>19.3.2 Optimal Extrusion Conditions 404</p> <p>19.3.3 Melt Strength 405</p> <p>References 406</p> <p><b>20 Conclusion </b><b>409</b></p> <p>20.1 Theoretical Challenges 410</p> <p>20.2 Experimental Difficulties 413</p> <p>References 415</p> <p>Symbols and Acronyms 417</p> <p>Subject Index 421</p>
<p><b> SHI-QING WANG, PhD,</b> is Kumho Professor of Polymer Science at the University of Akron. He has been teaching at the university level for more than 28 years and has over 150 peer reviewed publications. Dr. Wang is a reviewer for many journals and a Fellow of both the American Physical Society (APS) and American Association for the Advancement of Science (AAAS).
<p> Polymers are long string-like molecules. At high molecular weights, the long molecules are heavily intertwined, leading to unique viscoelastic behavior due to chain entanglement. Under large deformation, entangled polymers show a rich variety of nonlinear rheological responses including strain localization. <p><i> Nonlinear Polymer Rheology</i> offers new, significant insights to students and research professionals. All aspects of nonlinear polymer rheology are described within one common framework. The author explains why yielding, i.e., the transition from elastic response to irreversible deformation (flow), always takes place when entangled polymeric liquids are subjected to a variety of different forms of large deformation. <p> Integrating latest research results and characterization techniques, <i>Nonlinear Polymer Rheology</i> helps readers understand and apply basic principles of nonlinear polymer rheology. The book connects the theoretical framework with practical polymer processing, aiding practicing scientists and engineers to go beyond existing knowledge and explore innovative applications.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €