Details

VSC-FACTS-HVDC


VSC-FACTS-HVDC

Analysis, Modelling and Simulation in Power Grids
1. Aufl.

von: Enrique Acha, Pedro Roncero-Sánchez, Antonio de la Villa-Jaen, Luis M. Castro, Behzad Kazemtabrizi

107,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 01.04.2019
ISBN/EAN: 9781118965801
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An authoritative reference on the new generation of VSC-FACTS and VSC-HVDC systems and their applicability within current and future power systems</b></p> <p><i>VSC-FACTS-HVDC and PMU: Analysis, Modelling and Simulation in Power Grids</i> provides comprehensive coverage of VSC-FACTS and VSC-HVDC systems within the context of high-voltage Smart Grids modelling and simulation. Readers are presented with an examination of the advanced computer modelling of the VSC-FACTS and VSC-HVDC systems for steady-state, optimal solutions, state estimation and transient stability analyses, including numerous case studies for the reader to gain hands-on experience in the use of models and concepts.</p> <p>Key features:</p> <ul> <li>Wide-ranging treatment of the VSC achieved by assessing basic operating principles, topology structures, control algorithms and utility-level applications.</li> <li>Detailed advanced models of VSC-FACTS and VSC-HVDC equipment, suitable for a wide range of power network-wide studies, such as power flows, optimal power flows, state estimation and dynamic simulations.</li> <li>Contains numerous case studies and practical examples, including cases of multi-terminal VSC-HVDC systems.</li> <li>Includes a companion website featuring MATLAB software and Power System Computer Aided Design (PSCAD) scripts which are provided to enable the reader to gain hands-on experience.</li> <li>Detailed coverage of electromagnetic transient studies of VSC-FACTS and VSC-HVDC systems using the de-facto industry standard PSCAD/EMTDC simulation package.</li> </ul> <p>An essential guide for utility engineers, academics, and research students as well as industry managers, engineers in equipment design and manufacturing, and consultants.</p>
<p>Preface xiii</p> <p>About the Book xvii</p> <p>Acknowledgements xxi</p> <p>About the Companion Website xxiii</p> <p><b>1 Flexible Electrical Energy Systems </b><b>1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Classification of Flexible Transmission System Equipment 5</p> <p>1.2.1 SVC 6</p> <p>1.2.2 STATCOM 7</p> <p>1.2.3 SSSC 9</p> <p>1.2.4 Compound VSC Equipment for AC Applications 10</p> <p>1.2.5 CSC-HVDC Links 12</p> <p>1.2.6 VSC-HVDC 13</p> <p>1.3 Flexible Systems Vs Conventional Systems 15</p> <p>1.3.1 Transmission 16</p> <p>1.3.1.1 HVAC Vs HVDC Power Transmission for Increased Power Throughputs 16</p> <p>1.3.1.2 VAR Compensation 19</p> <p>1.3.1.3 Frequency Compensation 24</p> <p>1.3.2 Generation 27</p> <p>1.3.2.1 Wind Power Generation 28</p> <p>1.3.2.2 Solar Power Generation 30</p> <p>1.3.3 Distribution 33</p> <p>1.3.3.1 Load Compensation 35</p> <p>1.3.3.2 Dynamic Voltage Support 35</p> <p>1.3.3.3 Flexible Reconfigurations 36</p> <p>1.3.3.4 AC-DC Distribution Systems 37</p> <p>1.3.3.5 DC Power Grids with Multiple Voltage Levels 40</p> <p>1.3.3.6 Smart Grids 40</p> <p>1.4 Phasor Measurement Units 43</p> <p>1.5 Future Developments and Challenges 46</p> <p>1.5.1 Generation 46</p> <p>1.5.2 Transmission 47</p> <p>1.5.3 Distribution 48</p> <p>References 49</p> <p><b>2 Power Electronics for VSC-Based Bridges </b><b>53</b></p> <p>2.1 Introduction 53</p> <p>2.2 Power Semiconductor Switches 53</p> <p>2.2.1 The Diode 55</p> <p>2.2.2 The Thyristor 56</p> <p>2.2.3 The Bipolar Junction Transistor 57</p> <p>2.2.4 The Metal-Oxide-Semiconductor Field-Effect Transistor 59</p> <p>2.2.5 The Insulated-Gate Bipolar Transistor 59</p> <p>2.2.6 The Gate Turn-Off Thyristor 59</p> <p>2.2.7 The MOS-Controlled Thyristor 60</p> <p>2.2.8 Considerations for the Switch Selection Process 61</p> <p>2.3 Voltage Source Converters 61</p> <p>2.3.1 Basic Concepts of PulseWidth Modulated-Output Schemes and Half-Bridge VSC 62</p> <p>2.3.2 Single-Phase Full-Bridge VSC 66</p> <p>2.3.2.1 PWM with Bipolar Switching 67</p> <p>2.3.2.2 PWM with Unipolar Switching 69</p> <p>2.3.2.3 Square-Wave Mode 69</p> <p>2.3.2.4 Phase-Shift Control Operation 69</p> <p>2.3.3 Three-Phase VSC 72</p> <p>2.3.4 Three-Phase Multilevel VSC 74</p> <p>2.3.4.1 The Multilevel NPC VSC 76</p> <p>2.3.4.2 The Multilevel FC VSC 80</p> <p>2.3.4.3 The Cascaded H-Bridge VSC 81</p> <p>2.3.4.4 PWM Techniques for Multilevel VSCs 85</p> <p>2.3.4.5 An Alternative Multilevel Converter Topology 85</p> <p>2.4 HVDC Systems Based on VSC 88</p> <p>2.5 Conclusions 94</p> <p>References 95</p> <p><b>3 Power Flows </b><b>99</b></p> <p>3.1 Introduction 99</p> <p>3.2 Power Network Modelling 100</p> <p>3.2.1 Transmission Lines Modelling 100</p> <p>3.2.2 Conventional Transformers Modelling 100</p> <p>3.2.3 LTC Transformers Modelling 101</p> <p>3.2.4 Phase-Shifting Transformers Modelling 101</p> <p>3.2.5 Compound Transformers Modelling 102</p> <p>3.2.6 Series and Shunt Compensation Modelling 102</p> <p>3.2.7 Load Modelling 102</p> <p>3.2.8 Network Nodal Admittance 102</p> <p>3.3 Peculiarities of the Power Flow Formulation 103</p> <p>3.4 The Nodal Power Flow Equations 105</p> <p>3.5 The Newton-Raphson Method in Rectangular Coordinates 106</p> <p>3.5.1 The Linearized Equations 107</p> <p>3.5.2 Convergence Characteristics of the Newton-Raphson Method 108</p> <p>3.5.3 Initialization of Newton-Raphson Power Flow Solutions 109</p> <p>3.5.4 Incorporation of PMU Information in Newton-Raphson Power Flow Solutions 111</p> <p>3.6 The Voltage Source Converter Model 112</p> <p>3.6.1 VSC Nodal Admittance Matrix Representation 113</p> <p>3.6.2 Full VSC Station Model 115</p> <p>3.6.3 VSC Nodal Power Equations 117</p> <p>3.6.4 VSC Linearized System of Equations 117</p> <p>3.6.5 Non-Regulated Power Flow Solutions 119</p> <p>3.6.6 Practical Implementations 120</p> <p>3.6.6.1 Control Strategy 120</p> <p>3.6.6.2 Initial Parameters and Limits 120</p> <p>3.6.7 VSC Numerical Examples 121</p> <p>3.7 The STATCOM Model 125</p> <p>3.7.1 STATCOM Numerical Examples 127</p> <p>3.8 VSC-HVDC Systems Modelling 129</p> <p>3.8.1 VSC-HVDC Nodal Power Equations 131</p> <p>3.8.2 VSC-HVDC Linearized Equations 133</p> <p>3.8.3 Back-to-Back VSC-HVDC Systems Modelling 135</p> <p>3.8.4 VSC-HVDC Numerical Examples 135</p> <p>3.9 Three-Terminal VSC-HVDC System Model 139</p> <p>3.9.1 VSC Types 142</p> <p>3.9.2 Power Mismatches 142</p> <p>3.9.3 Linearized System of Equations 143</p> <p>3.10 Multi-Terminal VSC-HVDC System Model 146</p> <p>3.10.1 Multi-Terminal VSC-HVDC System with Common DC Bus Model 147</p> <p>3.10.2 Unified Solutions of AC-DC Networks 148</p> <p>3.10.3 Unified vs Quasi-Unified Power Flow Solutions 148</p> <p>3.10.4 Test Case 9 150</p> <p>3.11 Conclusions 153</p> <p>References 153</p> <p>3.A Appendix 154</p> <p>3.B Appendix 156</p> <p><b>4 Optimal Power Flows </b><b>159</b></p> <p>4.1 Introduction 159</p> <p>4.2 Power Flows in Polar Coordinates 160</p> <p>4.3 Optimal Power Flow Formulation 161</p> <p>4.4 The Lagrangian Methods 162</p> <p>4.4.1 Necessary Optimality Conditions (Karush-Kuhn-Tucker Conditions) 163</p> <p>4.5 AC OPF Formulation 164</p> <p>4.5.1 Objective Function 165</p> <p>4.5.2 Linearized System of Equations 165</p> <p>4.5.3 Augmented Lagrangian Function 167</p> <p>4.5.4 Selecting the OPF Solution Algorithm 168</p> <p>4.5.5 Control Enforcement in the OPF Algorithm 168</p> <p>4.5.6 Handling Limits of State Variables 169</p> <p>4.5.7 Handling Limits of Functions 169</p> <p>4.5.8 A Simple Network Model 170</p> <p>4.5.8.1 Step One – Identifying State and Control Variables 170</p> <p>4.5.8.2 Step Two – Identifying Constraints 170</p> <p>4.5.8.3 StepThree – Forming the Lagrangian Function 171</p> <p>4.5.8.4 Step Four – Linearized System of Equations 172</p> <p>4.5.8.5 Step Five – Implementation of the Augmented Lagrangian 172</p> <p>4.5.9 Recent Extensions in the OPF Problem 173</p> <p>4.5.10 Test Case: IEEE 30-Bus System 173</p> <p>4.5.10.1 Test System 173</p> <p>4.5.10.2 Problem Formulation 173</p> <p>4.5.10.3 OPF Test Cases 174</p> <p>4.5.10.4 Benchmark Test Case (With No Voltage Control) 175</p> <p>4.5.10.5 Test Case with Voltage Control Using Variable Transformers Taps (Case I) 176</p> <p>4.5.10.6 Test Case with Nodal Voltage Regulation (Case II) 176</p> <p>4.5.10.7 Test Case with Nodal Voltage Regulation (Case III) 177</p> <p>4.5.10.8 A Summary of Results 177</p> <p>4.6 Generalization of the OPF Formulation for AC-DC Networks 179</p> <p>4.7 Inclusion of the VSC Model in OPF 181</p> <p>4.7.1 VSC Power Balance Equations 181</p> <p>4.7.2 VSC Control Considerations 183</p> <p>4.7.3 VSC Linearized System of Equations 184</p> <p>4.8 The Point-to-Point and Back-to-Back VSC-HVDC Links Models in OPF 184</p> <p>4.8.1 VSC-HVDC Link Power Balance Formulation 185</p> <p>4.8.2 VSC-HVDC Link Control 187</p> <p>4.8.3 VSC-HVDC Full Set of Equality Constraints 188</p> <p>4.8.4 Linearized System of Equations 189</p> <p>4.9 Multi-Terminal VSC-HVDC Systems in OPF 191</p> <p>4.9.1 The Expanded, General Formulation 192</p> <p>4.9.2 Multi-Terminal VSC-HVDC Test Case 193</p> <p>4.9.2.1 DC Network 193</p> <p>4.9.2.2 AC Network 194</p> <p>4.9.2.3 Objective Function 194</p> <p>4.9.2.4 Summary of OPF Results 195</p> <p>DC Network 196</p> <p>4.9.2.5 Converter Outputs – No Converter Losses 196</p> <p>4.9.2.6 Converter Outputs –With Converter Losses 197</p> <p>AC Network 199</p> <p>4.9.2.7 Power Flows in AC Transmission Lines –With No Converter Losses 199</p> <p>4.9.2.8 Power Flows in AC Transmission Lines –With Converter Losses 200</p> <p>4.10 Conclusion 200</p> <p>References 201</p> <p><b>5 State Estimation </b><b>203</b></p> <p>5.1 Introduction 203</p> <p>5.2 State Estimation of Electrical Networks 204</p> <p>5.3 Network Model and Measurement System 206</p> <p>5.3.1 Topological Processing 206</p> <p>5.3.2 Network Model 206</p> <p>5.3.3 The Measurements System Model 208</p> <p>5.4 Calculation of the Estimated State 210</p> <p>5.4.1 Solution by the Normal Equations 210</p> <p>5.4.2 Equality-Constrained WLS 212</p> <p>5.4.3 Observability Analysis and Reference Phase 213</p> <p>5.4.4 Weighted Least Squares State Estimator (WLS-SE) Using Matlab Code 215</p> <p>5.5 Bad Data Identification 217</p> <p>5.5.1 Bad Data 217</p> <p>5.5.2 The Largest Normalized Residual Test 218</p> <p>5.5.3 Bad Data Identification Using WLS-SE 219</p> <p>5.6 FACTS Device State Estimation Modelling in Electrical Power Grids 220</p> <p>5.6.1 Incorporation of New Models in State Estimation 220</p> <p>5.6.2 Voltage Source Converters 221</p> <p>5.6.3 STATCOM 224</p> <p>5.6.4 STATCOM Model in WLS-SE 225</p> <p>5.6.5 Unified Power Flow Controller 227</p> <p>5.6.6 The UPFC Model in WLS-SE 228</p> <p>5.6.7 High Voltage Direct Current Based on Voltage Source Converters 230</p> <p>5.6.8 VSC-HVDC Model in WLS-SE 231</p> <p>5.6.9 Multi-terminal HVDC 233</p> <p>5.6.10 MT-VSC-HVDC Model in WLS-SE 235</p> <p>5.7 Incorporation of Measurements Furnished by PMUs 236</p> <p>5.7.1 Incorporation of Synchrophasors in State Estimation 236</p> <p>5.7.2 Synchrophasors Formulations 237</p> <p>5.7.3 Phase Reference 239</p> <p>5.7.4 PMU Outputs in WLS-SE 239</p> <p>5.A Appendix 240</p> <p>5.A.1 Input Data and Output Results in WLS-SE 240</p> <p>5.A.1.1 Input Data 240</p> <p>5.A.1.2 Network Data 240</p> <p>5.A.1.3 Measurements Data 242</p> <p>5.A.1.4 State Estimator Configuration 243</p> <p>5.A.2 Output Results 243</p> <p>References 244</p> <p><b>6 Dynamic Simulations of Power Systems </b><b>247</b></p> <p>6.1 Introduction 247</p> <p>6.2 Modelling of Conventional Power System Components 248</p> <p>6.2.1 Modelling of Synchronous Generators 248</p> <p>6.2.2 Synchronous Generator Controllers 250</p> <p>6.2.2.1 Speed Governors 250</p> <p>6.2.2.2 Steam Turbine and Hydro Turbine 251</p> <p>6.2.2.3 Automatic Voltage Regulator 252</p> <p>6.2.2.4 Transmission Line Model 253</p> <p>6.2.2.5 Load Model 253</p> <p>6.3 Time Domain Solution Philosophy 254</p> <p>6.3.1 Numerical Solution Technique 254</p> <p>6.3.2 Benchmark Numerical Example 257</p> <p>6.4 Modelling of the STATCOM for Dynamic Simulations 261</p> <p>6.4.1 Discretization and Linearization of the STATCOM Differential Equations 264</p> <p>6.4.2 Numerical Example with STATCOMs 266</p> <p>6.5 Modelling of VSC-HVDC Links for Dynamic Simulations 272</p> <p>6.5.1 Discretization and Linearization of the Differential Equations of the VSC-HVDC 276</p> <p>6.5.2 Validation of the VSC-HVDC Link Model 280</p> <p>6.5.3 Numerical Example with an Embedded VSC-HVDC Link 283</p> <p>6.5.4 Dynamic Model of the VSC-HVDC Link with Frequency Regulation Capabilities 289</p> <p>6.5.4.1 Linearization of the Equations of the VSC-HVDC Model with Frequency Regulation Capabilities 291</p> <p>6.5.4.2 Validation of the VSC-HVDC LinkModel Providing Frequency Support 292</p> <p>6.5.4.3 Numerical Example with a VSC-HVDC Link Model Providing Frequency Support 294</p> <p>6.6 Modelling of Multi-terminal VSC-HVDC Systems for Dynamic Simulations 298</p> <p>6.6.1 Three-terminal VSC-HVDC Dynamic Model 299</p> <p>6.6.2 Validation of the Three-Terminal VSC-HVDC Dynamic Model 307</p> <p>6.6.3 Multi-Terminal VSC-HVDC Dynamic Model 310</p> <p>6.6.4 Numerical Example with a Six-Terminal VSC-HVDC Link Forming a DC Ring 314</p> <p>6.6.4.1 Disconnection of a DC Transmission Line 314</p> <p>6.6.4.2 Three-Phase Fault Applied to AC3 314</p> <p>6.7 Conclusion 317</p> <p>References 318</p> <p><b>7 Electromagnetic Transient Studies and Simulation of FACTS-HVDC-VSC Equipment </b><b>321</b></p> <p>7.1 Introduction 321</p> <p>7.2 The STATCOM Case 322</p> <p>7.3 STATCOM Based on Multilevel VSC 336</p> <p>7.4 Example of HVDC based on Multilevel FC Converter 347</p> <p>7.5 Example of a Multi-Terminal HVDC System Using Multilevel FC Converters 358</p> <p>7.6 Conclusions 375</p> <p>References 375</p> <p>Index 377</p>
<p><b>Professor Enrique Acha, <i>Laboratory of Electrical Energy Engineering, Tampere University of Technology, Finland</i></b> <p><b>Dr Pedro Roncero-ánchez, <i>Department of Electronics, Electrical Engineering and Control Systems, University of Castilla-La Mancha, Spain</i></b> <p><b>Dr Antonio de la Villa-Jaén, <i>Department of Electrical Engineering, University of Seville, Spain</i></b> <p><b>Dr Luis M. Castro, <i>Faculty of Engineering, National University of Mexico (UNAM), Mexico City, Mexico</i></b> <p><b>Dr Behzad Kazemtabrizi, <i>School of Engineering, Durham University, UK</i></b>
<p><b><i>An authoritative reference on the new generation of VSC-FACTS and VSC-HVDC systems and their applicability within current and future power systems</i></b> <p><i>VSC-FACTS-HVDC: Analysis, Modelling and Simulation in Power Grids</i> provides comprehensive coverage of VSC-FACTS and VSC-HVDC systems within the context of high-voltage Smart Grids modelling and simulation. Readers are presented with an examination of the advanced computer modelling of the VSC-FACTS and VSC-HVDC systems for steady-state, optimal solutions, state estimation and transient stability analyses, including numerous case studies for the reader to gain hands-on experience in the use of models and concepts. <p>Key features: <ul> <li>Wide-ranging treatment of the VSC achieved by assessing basic operating principles, topology structures, control algorithms and utility-level applications.</li> <li>Detailed advanced models of VSC-FACTS and VSC-HVDC equipment, suitable for a wide range of power network-wide studies, such as power flows, optimal power flows, state estimation and dynamic simulations.</li> <li>Contains numerous case studies and practical examples, including cases of multi-terminal VSC-HVDC systems.</li> <li>Includes a companion website featuring MATLAB software and Power System Computer Aided Design (PSCAD) scripts which are provided to enable the reader to gain hands-on experience.</li> <li>Detailed coverage of electromagnetic transient studies of VSC-FACTS and VSC-HVDC systems using the de-facto industry standard PSCAD<small><sup>™</sup></small>/EMTDC<small><sup>™</sup></small> simulation package.</li> </ul> <p>An essential guide for utility engineers, academics, and research students as well as industry managers, engineers in equipment design and manufacturing, and consultants.

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €