Details

Decision Analytics and Optimization in Disease Prevention and Treatment


Decision Analytics and Optimization in Disease Prevention and Treatment


Wiley Series in Operations Research and Management Science 1. Aufl.

von: Nan Kong, Shengfan Zhang

100,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 02.02.2018
ISBN/EAN: 9781118960141
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A systematic review of the most current decision models and techniques for disease prevention and treatment</b> </p> <p><i>Decision Analytics and Optimization in Disease Prevention and Treatment </i>offers a comprehensive resource of the most current decision models and techniques for disease prevention and treatment. With contributions from leading experts in the field, this important resource presents information on the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology. Designed to be accessible, in each chapter the text presents one decision problem with the related methodology to showcase the vast applicability of operations research tools and techniques in advancing medical decision making.</p> <p>This vital resource features the most recent and effective approaches to the quickly growing field of healthcare decision analytics, which involves cost-effectiveness analysis, stochastic modeling, and computer simulation. Throughout the book, the contributors discuss clinical applications of modeling and optimization techniques to assist medical decision making within complex environments. Accessible and authoritative, <i>Decision Analytics and Optimization in Disease Prevention and Treatment:</i><i> </i></p> <ul> <li>Presents summaries of the state-of-the-art research that has successfully utilized both decision analytics and optimization tools within healthcare operations research</li> <li>Highlights the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology</li> <li>Includes contributions by well-known experts from operations researchers to clinical researchers, and from data scientists to public health administrators</li> <li>Offers clarification on common misunderstandings and misnomers while shedding light on new approaches in this growing area</li> </ul> <p>Designed for use by academics, practitioners, and researchers, <i>Decision Analytics and Optimization in Disease Prevention and Treatment </i>offers a comprehensive resource for accessing the power of decision analytics and optimization tools within healthcare operations research.</p>
<p>CONTRIBUTORS xiii</p> <p>PREFACE xvii</p> <p><b>PART 1 INFECTIOUS DISEASE CONTROL AND MANAGEMENT 1</b></p> <p><b>1 Optimization in Infectious Disease Control and Prevention: Tuberculosis Modeling Using Microsimulation 3<br /></b><i>Sze</i><i>?-</i><i>chuan Suen</i></p> <p>1.1 Tuberculosis Epidemiology and Background 4</p> <p>1.1.1 TB in India 5</p> <p>1.2 Microsimulations for Disease Control 6</p> <p>1.3 A Microsimulation for Tuberculosis Control in India 8</p> <p>1.3.1 Population Dynamics 9</p> <p>1.3.2 Dynamics of TB in India 9</p> <p>1.3.3 Activation 10</p> <p>1.3.4 TB Treatment 11</p> <p>1.3.5 Probability Conversions 13</p> <p>1.3.6 Calibration and Validation 14</p> <p>1.3.7 Intervention Policies and Analysis 16</p> <p>1.3.8 Time Horizons and Discounting 18</p> <p>1.3.9 Incremental Cost?-Effectiveness Ratios and Net Monetary Benefits 19</p> <p>1.3.10 Sensitivity Analysis 22</p> <p>1.4 Conclusion 22</p> <p>References 23</p> <p><b>2 Saving Lives with Operations Research: Models to Improve HIV Resource Allocation 25<br /></b><i>Sabina S. Alistar and Margaret L. Brandeau</i></p> <p>2.1 Introduction 25</p> <p>2.1.1 Background 25</p> <p>2.1.2 Modeling Approaches 27</p> <p>2.1.3 Chapter Overview 31</p> <p>2.2 HIV Resource Allocation: Theoretical Analyses 31</p> <p>2.2.1 Defining the Resource Allocation Problem 31</p> <p>2.2.2 Production Functions for Prevention and Treatment Programs 35</p> <p>2.2.3 Allocating Resources among Prevention and Treatment Programs 37</p> <p>2.3 HIV Resource Allocation: Portfolio Analyses 39</p> <p>2.3.1 Portfolio Analysis 39</p> <p>2.3.2 O piate Substitution Therapy and ART in Ukraine 40</p> <p>2.3.3 Pre?-exposure Prophylaxis and ART 42</p> <p>2.4 HIV Resource Allocation: A Tool for Decision Makers 44</p> <p>2.4.1 REACH Model Overview 44</p> <p>2.4.2 Example Analysis: Brazil 45</p> <p>2.4.3 Example Analysis: Thailand 48</p> <p>2.5 Discussion and Further Research 50</p> <p>Acknowledgment 53</p> <p>References 53</p> <p><b>3 Adaptive Decision?-Making During Epidemics 59<br /></b><i>Reza Yaesoubi and Ted Cohen</i></p> <p>3.1 Introduction 59</p> <p>3.2 Problem Formulation 61</p> <p>3.3 Methods 63</p> <p>3.3.1 The 1918 Influenza Pandemic in San Francisco, CA 63</p> <p>3.3.2 Stochastic Transmission Dynamic Models 64</p> <p>3.3.3 Calibration 66</p> <p>3.3.4 O ptimizing Dynamic Health Policies 69</p> <p>3.4 Numerical Results 73</p> <p>3.5 Conclusion 75</p> <p>Acknowledgments 76</p> <p>References 76</p> <p><b>4 Assessing Register?-Based Chlamydia Infection Screening Strategies: A Cost?-Effectiveness Analysis on Screening Start/End Age and Frequency 81<br /></b><i>Yu Teng, Nan Kong, and Wanzhu Tu</i></p> <p>4.1 Introduction 81</p> <p>4.2 Background Literature Review 83</p> <p>4.2.1 Clinical Background on CT Infection and Control 83</p> <p>4.2.2 CT Screening Programs 85</p> <p>4.2.3 Computational Modeling on CT Transmission and Control 85</p> <p>4.3 Mathematical Modeling 89</p> <p>4.3.1 An Age?-Structured Compartmental Model 89</p> <p>4.3.2 Model Parameterization and Validation 93</p> <p>4.4 Strategy Assessment 98</p> <p>4.4.1 Base?-Case Assessment 98</p> <p>4.4.2 Sensitivity Analysis 100</p> <p>4.5 Conclusions and Future Research 101</p> <p>References 102</p> <p><b>5 Optimal Selection of Assays for Detecting Infectious Agents in Donated Blood 109<br /></b><i>Ebru K. Bish, Hadi El</i><i>?-</i><i>Amine, Douglas R. Bish, Susan L. Stramer, and Anthony D. Slonim</i></p> <p>5.1 Introduction and Challenges 109</p> <p>5.1.1 Introduction 109</p> <p>5.1.2 The Challenges 111</p> <p>5.2 The Notation and Decision Problem 113</p> <p>5.2.1 Notation 114</p> <p>5.2.2 Measures of Interest 115</p> <p>5.2.3 Model Formulation 117</p> <p>5.2.4 Relationship of the Proposed Mathematical Models to Cost?-Effectiveness Analysis 118</p> <p>5.3 The Case Study of the Sub?-Saharan Africa Region and the United States 119</p> <p>5.3.1 Uncertainty in Prevalence Rates 122</p> <p>5.4 Contributions and Future Research Directions 123</p> <p>Acknowledgments 123</p> <p>References 124</p> <p><b>6 Modeling Chronic Hepatitis C During Rapid Therapeutic Advance: Cost?-Effective Screening, Monitoring, and Treatment Strategies 129<br /></b><i>Shan Liu</i></p> <p>6.1 Introduction 129</p> <p>6.2 Method 131</p> <p>6.2.1 Modeling Disease Natural History and Intervention 132</p> <p>6.2.2 Estimating Parameters for Disease Progression and Death 134</p> <p>6.3 Four Research Areas in Designing Effective HCV Interventions 139</p> <p>6.3.1 Cost?-Effective Screening and Treatment Strategies 139</p> <p>6.3.2 Cost?-Effective Monitoring Guidelines 141</p> <p>6.3.3 O ptimal Treatment Adoption Decisions 141</p> <p>6.3.4 O ptimal Treatment Delivery in Integrated Healthcare Systems 145</p> <p>6.4 Concluding Remarks 148</p> <p>References 148</p> <p><b>PART 2 NONCOMMUNICABLE DISEASE PREVENTION 153</b></p> <p><b>7 Modeling Disease Progression and Risk?-Differentiated Screening for Cervical Cancer Prevention 155<br /></b><i>Adriana Ley</i><i>?-</i><i>Chavez and Julia L. Higle</i></p> <p>7.1 Introduction 155</p> <p>7.2 Literature Review 157</p> <p>7.3 Modeling Cervical Cancer Screening 159</p> <p>7.3.1 Model Components 160</p> <p>7.3.2 Parameter Selection 166</p> <p>7.3.3 Implementation 169</p> <p>7.4 Model?-Based Analyses 171</p> <p>7.4.1 Cost?-Effectiveness Analysis 171</p> <p>7.4.2 Sensitivity Analysis 172</p> <p>7.5 Concluding Remarks 174</p> <p>References 175</p> <p><b>8 Using Finite?-Horizon Markov Decision Processes for Optimizing Post?-Mammography Diagnostic Decisions 183<br /></b><i>Sait Tunc, Oguzhan Alagoz, Jagpreet Chhatwal, and Elizabeth S. Burnside</i></p> <p>8.1 Introduction 183</p> <p>8.2 Model Formulations 185</p> <p>8.3 Structural Properties 188</p> <p>8.4 Numerical Results 193</p> <p>8.5 Summary 196</p> <p>Acknowledgments 196</p> <p>References 197</p> <p><b>9 Partially Observable Markov Decision Processes for Prostate Cancer Screening, Surveillance, and Treatment: A Budgeted Sampling Approximation Method 201<br /></b><i>Jingyu Zhang and Brian T. Denton</i></p> <p>9.1 Introduction 201</p> <p>9.2 Review of POMDP Models and Benchmark Algorithms 204</p> <p>9.3 A POMDP Model for Prostate Cancer Screening, Surveillance, and Treatment 206</p> <p>9.4 Budgeted Sampling Approximation 209</p> <p>9.4.1 Lower and Upper Bounds 209</p> <p>9.4.2 Summary of the Algorithm 211</p> <p>9.5 Computational Experiments 213</p> <p>9.5.1 Finite?-Horizon Test Instances 213</p> <p>9.5.2 Computational Experiments 214</p> <p>9.6 Conclusions 217</p> <p>References 219</p> <p><b>10 Cost?-Effectiveness Analysis of Breast Cancer Mammography Screening Policies Considering Uncertainty in Women’s Adherence 223<br /></b><i>Mahboubeh Madadi and Shengfan Zhang</i></p> <p>10.1 Introduction 223</p> <p>10.2 Model Formulation 225</p> <p>10.3 Numerical Studies 231</p> <p>10.4 Results 233</p> <p>10.4.1 Perfect Adherence Case 233</p> <p>10.4.2 General Population Adherence Case 234</p> <p>10.5 Summary 236</p> <p>References 237</p> <p><b>11 An Agent?-Based Model for Ideal Cardiovascular Health 241<br /></b><i>Yan Li, Nan Kong, Mark A. Lawley, and José A. Pagán</i></p> <p>11.1 Introduction 241</p> <p>11.2 Methodology 243</p> <p>11.2.1 Agent?-Based Modeling 243</p> <p>11.2.2 Model Structure 244</p> <p>11.2.3 Parameter Estimation 246</p> <p>11.2.4 User Interface 248</p> <p>11.2.5 Model Validation 249</p> <p>11.3 Results 250</p> <p>11.3.1 Simulating American Adults 250</p> <p>11.4 Simulating the Medicare?-Age Population and the Disease?-Specific Subpopulations 252</p> <p>11.5 Future Research 254</p> <p>11.6 Summary 255</p> <p>References 255</p> <p><b>PART 3 TREATMENT TECHNOLOGY AND SYSTEM 259</b></p> <p><b>12 Biological Planning Optimization for High?-Dose?-Rate Brachytherapy and its Application to Cervical Cancer Treatment 261<br /></b><i>Eva K. Lee, Fan Yuan, Alistair Templeton, Rui Yao, Krystyna Kiel, and James C.H. Chu</i></p> <p>12.1 Introduction 261</p> <p>12.2 Challenges and Objectives 263</p> <p>12.3 Materials and Methods 265</p> <p>12.3.1 High?-Dose?-Rate Brachytherapy 265</p> <p>12.3.2 PET Image 266</p> <p>12.3.3 Novel OR?-Based Treatment?-Planning Model 266</p> <p>12.3.4 Computational Challenges and Solution Strategies 271</p> <p>12.4 Validation and Results 273</p> <p>12.5 Findings, Implementation, and Challenges 276</p> <p>12.6 Impact and Significance 279</p> <p>12.6.1 Quality of Care and Quality of Life for Patients 279</p> <p>12.6.2 Advancing the Cancer Treatment Frontier 279</p> <p>12.6.3 Advances in Operations Research Methodologies 280</p> <p>Acknowledgment 281</p> <p>References 281</p> <p><b>13 Fluence Map Optimization in Intensity?-Modulated Radiation Therapy Treatment Planning 285<br /></b><i>Dionne M. Aleman</i></p> <p>13.1 Introduction 285</p> <p>13.2 Treatment Plan Evaluation 288</p> <p>13.2.1 Physical Dose Measures 289</p> <p>13.2.2 Biological Dose Measures 291</p> <p>13.3 FMO Optimization Models 292</p> <p>13.3.1 O bjective Functions 293</p> <p>13.3.2 Constraints 295</p> <p>13.3.3 Robust Formulation 297</p> <p>13.4 O ptimization Approaches 299</p> <p>13.5 Conclusions 300</p> <p>References 301</p> <p><b>14 Sliding Window IMRT and VMAT Optimization 307<br /></b><i>David Craft and Tarek Halabi</i></p> <p>14.1 Introduction 307</p> <p>14.2 Two?-Step IMRT Planning 309</p> <p>14.3 O ne?-Step IMRT Planning 310</p> <p>14.3.1 O ne?-Step Sliding Window Optimization 310</p> <p>14.4 Volumetric Modulated ARC Therapy 313</p> <p>14.5 Future Work for Radiotherapy Optimization 315</p> <p>14.5.1 Custom Solver for Radiotherapy 315</p> <p>14.5.2 Incorporating Additional Hardware Considerations into Sliding Window VMAT Planning 315</p> <p>14.5.3 Trade?-Off between Delivery Time and Plan Quality 316</p> <p>14.5.4 What Do We Optimize? 316</p> <p>14.6 Concluding Thoughts 317</p> <p>References 318</p> <p><b>15 Modeling the Cardiovascular Disease Prevention–Treatment Trade?-Off 323<br /></b><i>George Miller</i></p> <p>15.1 Introduction 323</p> <p>15.2 Methods 325</p> <p>15.2.1 Model Overview 325</p> <p>15.2.2 Model Structure 327</p> <p>15.2.3 Model Inputs 331</p> <p>15.3 Results 334</p> <p>15.3.1 Base Case 334</p> <p>15.3.2 Interaction between Prevention and Treatment Spending 335</p> <p>15.3.3 Impact of Discount Rate on Cost?-Effectiveness 336</p> <p>15.3.4 O ptimal Spending Mix 337</p> <p>15.3.5 Impact of Prevention Lag on Optimal Mix 338</p> <p>15.3.6 Impact of Discount Rate on Optimal Mix 340</p> <p>15.3.7 Impact of Time Horizon on Optimal Mix 340</p> <p>15.3.8 Impacts of Research 341</p> <p>15.4 Discussion 344</p> <p>Acknowledgment 346</p> <p>References 346</p> <p><b>16 Treatment Optimization for Patients with Type 2 Diabetes 349<br /></b><i>Jennifer Mason Lobo</i></p> <p>16.1 Introduction 349</p> <p>16.2 Literature Review 350</p> <p>16.3 Model Formulation 353</p> <p>16.3.1 Decision Epochs 354</p> <p>16.3.2 States 354</p> <p>16.3.3 Actions 355</p> <p>16.3.4 Probabilities 355</p> <p>16.3.5 Rewards 356</p> <p>16.3.6 Value Function 356</p> <p>16.4 Numerical Results 357</p> <p>16.4.1 Model Inputs 357</p> <p>16.4.2 Optimal Treatment Policies to Reduce Polypharmacy 358</p> <p>16.5 Conclusions 362</p> <p>References 363</p> <p><b>17 Machine Learning for Early Detection and Treatment Outcome Prediction 367<br /></b><i>Eva K. Lee</i></p> <p>17.1 Introduction 367</p> <p>17.2 Background 369</p> <p>17.3 Machine Learning with Discrete Support Vector Machine Predictive Models 372</p> <p>17.3.1 Modeling of Reserved?-Judgment Region for General Groups 373</p> <p>17.3.2 Discriminant Analysis via Mixed?-Integer Programming 374</p> <p>17.3.3 Model Variations 376</p> <p>17.3.4 Theoretical Properties and Computational Strategies 379</p> <p>17.4 Applying Damip to Real?-World Applications 380</p> <p>17.4.1 Validation of Model and Computational Effort 381</p> <p>17.4.2 Applications to Biological and Medical Problems 381</p> <p>17.4.3 Applying DAMIP to UCI Repository of Machine Learning Databases 389</p> <p>17.5 Summary and Conclusion 393</p> <p>Acknowledgment 394</p> <p>References 394</p> <p><b>INDEX 401</b></p> <p> </p>
<p> <strong>NAN KONG, PhD,</strong> is Associate Professor in the Weldon School of Biomedical Engineering at Purdue University. Dr. Kong is a member of INFORMS and SMDM, and his research interests include healthcare resource allocation, medical decision-making, and hospital operations management. <p> <strong>SHENGFAN ZHANG, PhD,</strong> is Assistant Professor in the Department of Industrial Engineering at the University of Arkansas. Dr. Zhang is a member of INFORMS and IISE, and her research interests include mathematical modeling of stochastic systems, medical decision-making, and health analytics.
<p> <strong>A systematic review of the most current decision models and techniques for disease prevention and treatment</strong> <p> <em>Decision Analytics and Optimization in Disease Prevention and Treatment</em> offers a comprehensive resource of the most current decision models and techniques for disease prevention and treatment. With contributions from leading experts in the field, this important resource presents information on the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology. Designed to be accessible, in each chapter the text presents one decision problem with the related methodology to showcase the vast applicability of operations research tools and techniques in advancing medical decision making. <p> This vital resource features the most recent and effective approaches to the quickly growing field of healthcare decision analytics, which involves cost-effectiveness analysis, stochastic modeling, and computer simulation. Throughout the book, the contributors discuss clinical applications of modeling and optimization techniques to assist medical decision making within complex environments. Accessible and authoritative, <em>Decision Analytics and Optimization in Disease Prevention and Treatment:</em> <ul> <li>Presents summaries of the state-of-the-art research that has successfully utilized both decision analytics and optimization tools within healthcare operations research </li> <li>Highlights the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology</li> <li>Includes contributions by well-known experts from operations researchers to clinical researchers, and from data scientists to public health administrators</li> <li>Offers clarification on common misunderstandings and misnomers while shedding light on new approaches in this growing area</li> </ul> <br> <p> Designed for use by academics, practitioners, and researchers, <em>Decision Analytics and Optimization in Disease Prevention and Treatment</em> offers a comprehensive resource for accessing the power of decision analytics and optimization tools within healthcare operations research.

Diese Produkte könnten Sie auch interessieren:

Mindfulness
Mindfulness
von: Gill Hasson
PDF ebook
12,99 €
Counterparty Credit Risk, Collateral and Funding
Counterparty Credit Risk, Collateral and Funding
von: Damiano Brigo, Massimo Morini, Andrea Pallavicini
EPUB ebook
69,99 €