Details

Power Electronics-Enabled Autonomous Power Systems


Power Electronics-Enabled Autonomous Power Systems

Next Generation Smart Grids
IEEE Press 1. Aufl.

von: Qing-Chang Zhong

89,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 05.03.2020
ISBN/EAN: 9781118803509
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Power systems worldwide are going through a paradigm shift from centralized generation to distributed generation. This book presents the SYNDEM (i.e., synchronized and democratized) grid architecture and its technical routes to harmonize the integration of renewable energy sources, electric vehicles, storage systems, and flexible loads, with the synchronization mechanism of synchronous machines, to enable autonomous operation of power systems, and to promote energy freedom. This is <i>a game changer for the grid. It is the sort of breakthrough — like the touch screen in smart phones — that helps to push an industry from one era to the next,</i> as reported by Keith Schneider, a New York Times correspondent since 1982. This book contains an introductory chapter and additional 24 chapters in five parts: Theoretical Framework, First-Generation VSM (virtual synchronous machines), Second-Generation VSM, Third-Generation VSM, and Case Studies. Most of the chapters include experimental results. <br /><br />As the first book of its kind for power electronics-enabled autonomous power systems, it <br /><br />• introduces a holistic architecture applicable to both large and small power systems, including aircraft power systems, ship power systems, microgrids, and supergrids <br />• provides latest research to address the unprecedented challenges faced by power systems and to enhance grid stability, reliability, security, resiliency, and sustainability <br />• demonstrates how future power systems achieve harmonious interaction, prevent local faults from cascading into wide-area blackouts, and operate autonomously with minimized cyber-attacks <br />• highlights the significance of the SYNDEM concept for power systems and beyond <br /><br /><i>Power Electronics-Enabled Autonomous Power Systems</i> is an excellent book for researchers, engineers, and students involved in energy and power systems, electrical and control engineering, and power electronics. The SYNDEM theoretical framework chapter is also suitable for policy makers, legislators, entrepreneurs, commissioners of utility commissions, energy and environmental agency staff, utility personnel, investors, consultants, and attorneys.
<p>List of Figures xix</p> <p>List of Tables xxxiii</p> <p>Foreword xxxv</p> <p>Preface xxxvii</p> <p>Acknowledgments xxxix</p> <p>About the Author xli</p> <p>List of Abbreviations xliii</p> <p><b>1 Introduction </b><b>1</b></p> <p>1.1 Motivation and Purpose 1</p> <p>1.2 Outline of the Book 3</p> <p>1.3 Evolution of Power Systems 7</p> <p>1.3.1 Today’s Grids 8</p> <p>1.3.2 Smart Grids 8</p> <p>1.3.3 Next-Generation Smart Grids 8</p> <p>1.4 Summary 10</p> <p><b>Part I Theoretical Framework </b><b>11</b></p> <p><b>2 Synchronized and Democratized (SYNDEM) Smart Grid </b><b>13</b></p> <p>2.1 The SYNDEM Concept 13</p> <p>2.2 SYNDEM Rule of Law – Synchronization Mechanism of Synchronous Machines 15</p> <p>2.3 SYNDEM Legal Equality – Homogenizing Heterogeneous Players as Virtual Synchronous Machines (VSM) 18</p> <p>2.4 SYNDEM Grid Architecture 19</p> <p>2.4.1 Architecture of Electrical Systems 19</p> <p>2.4.2 Overall Architecture 22</p> <p>2.4.3 Typical Scenarios 23</p> <p>2.5 Potential Benefits 24</p> <p>2.6 Brief Description of Technical Routes 28</p> <p>2.6.1 The First-Generation (1G) VSM 28</p> <p>2.6.2 The Second-Generation (2G) VSM 29</p> <p>2.6.3 The Third-Generation (3G) VSM 29</p> <p>2.7 Primary Frequency Response (PFR) in a SYNDEM Smart Grid 30</p> <p>2.7.1 PFR from both Generators and Loads 31</p> <p>2.7.2 Droop 31</p> <p>2.7.3 Fast Action Without Delay 31</p> <p>2.7.4 Reconfigurable Virtual Inertia 31</p> <p>2.7.5 Continuous PFR 32</p> <p>2.8 SYNDEM Roots 32</p> <p>2.8.1 SYNDEM and Taoism 32</p> <p>2.8.2 SYNDEM and Chinese History 33</p> <p>2.9 Summary 34</p> <p><b>3 Ghost Power Theory </b><b>35</b></p> <p>3.1 Introduction 35</p> <p>3.2 Ghost Operator, Ghost Signal, and Ghost System 36</p> <p>3.2.1 The Ghost Operator 36</p> <p>3.2.2 The Ghost Signal 37</p> <p>3.2.3 The Ghost System 39</p> <p>3.3 Physical Meaning of Reactive Power in Electrical Systems 41</p> <p>3.4 Extension to Complete the Electrical-Mechanical Analogy 43</p> <p>3.5 Generalization to Other Energy Systems 46</p> <p>3.6 Summary and Discussions 47</p> <p><b>Part II 1G VSM: Synchronverters </b><b>49</b></p> <p><b>4 Synchronverter Based Generation </b><b>51</b></p> <p>4.1 Mathematical Model of Synchronous Generatorss 51</p> <p>4.1.1 The Electrical Part 51</p> <p>4.1.2 The Mechanical Part 53</p> <p>4.1.3 Presence of a Neutral Line 54</p> <p>4.2 Implementation of a Synchronverter 55</p> <p>4.2.1 The Power Part 56</p> <p>4.2.2 The Electronic Part 56</p> <p>4.3 Operation of a Synchronverter 57</p> <p>4.3.1 Regulation of Real Power and Frequency Droop Control 57</p> <p>4.3.2 Regulation of Reactive Power and Voltage Droop Control 58</p> <p>4.4 Simulation Results 59</p> <p>4.4.1 Under Different Grid Frequencies 60</p> <p>4.4.2 Under Different Load Conditions 62</p> <p>4.5 Experimental Results 62</p> <p>4.5.1 Grid-connected Set Mode 63</p> <p>4.5.2 Grid-connected Droop Mode 63</p> <p>4.5.3 Grid-connected Parallel Operation 63</p> <p>4.5.4 Seamless Transfer of the Operation Mode 64</p> <p>4.6 Summary 67</p> <p><b>5 Synchronverter Based Loads </b><b>69</b></p> <p>5.1 Introduction 69</p> <p>5.2 Modeling of a Synchronous Motor 70</p> <p>5.3 Operation of a PWM Rectifier as a VSM 71</p> <p>5.3.1 Controlling the Power 72</p> <p>5.3.2 Controlling the DC-bus Voltage 73</p> <p>5.4 Simulation Results 74</p> <p>5.4.1 Controlling the Power 74</p> <p>5.4.2 Controlling the DC-bus Voltage 76</p> <p>5.5 Experimental Results 77</p> <p>5.5.1 Controlling the Power 77</p> <p>5.5.2 Controlling the DC-bus Voltage 77</p> <p>5.6 Summary 79</p> <p><b>6 Control of Permanent Magnet Synchronous Generator (PMSG) Based Wind Turbines </b><b>81</b></p> <p>6.1 Introduction 81</p> <p>6.2 PMSG Based Wind Turbines 83</p> <p>6.3 Control of the Rotor-Side Converter 83</p> <p>6.4 Control of the Grid-Side Converter 85</p> <p>6.5 Real-time Simulation Results 86</p> <p>6.5.1 Under Normal Grid Conditions 87</p> <p>6.5.2 Under Grid Faults 89</p> <p>6.6 Summary 90</p> <p><b>7 Synchronverter Based AC Ward Leonard Drive Systems </b><b>91</b></p> <p>7.1 Introduction 91</p> <p>7.2 Ward Leonard Drive Systems 93</p> <p>7.3 Model of a Synchronous Generator 95</p> <p>7.4 Control Scheme with a Speed Sensor 96</p> <p>7.4.1 Control Structure 96</p> <p>7.4.2 System Analysis and Parameter Selection 97</p> <p>7.5 Control Scheme without a Speed Sensor 98</p> <p>7.5.1 Control Structure 98</p> <p>7.5.2 System Analysis and Parameter Selection 99</p> <p>7.6 Experimental Results 100</p> <p>7.6.1 Case 1: With a Speed Sensor for Feedback 101</p> <p>7.6.2 Case 2: Without a Speed Sensor for Feedback 104</p> <p>7.7 Summary 106</p> <p><b>8 Synchronverter without a Dedicated Synchronization Unit </b><b>107</b></p> <p>8.1 Introduction 107</p> <p>8.2 Interaction of a Synchronous Generator (SG) with an Infinite Bus 109</p> <p>8.3 Controller for a Self-synchronized Synchronverter 110</p> <p>8.3.1 Operation after Connection to the Grid 112</p> <p>8.3.2 Synchronization before Connection to the Grid 113</p> <p>8.4 Simulation Results 114</p> <p>8.4.1 Normal Operation 114</p> <p>8.4.2 Operation under Grid Faults 118</p> <p>8.5 Experimental Results 119</p> <p>8.5.1 Case 1: With the Grid Frequency Below 50 Hz 119</p> <p>8.5.2 Case 2: With the Grid Frequency Above 50 Hz 123</p> <p>8.6 Benefits of Removing the Synchronization Unit 123</p> <p>8.7 Summary 124</p> <p><b>9 Synchronverter Based Loads without a Dedicated Synchronisation Unit </b><b>125</b></p> <p>9.1 Controlling the DC-bus Voltage 125</p> <p>9.1.1 Self-synchronization 125</p> <p>9.1.2 Normal Operation 126</p> <p>9.2 Controlling the Power 127</p> <p>9.3 Simulation Results 127</p> <p>9.3.1 Controlling the DC-bus Voltage 128</p> <p>9.3.2 Controlling the Power 130</p> <p>9.4 Experimental Results 131</p> <p>9.4.1 Controlling the DC-bus Voltage 132</p> <p>9.4.2 Controlling the Power 132</p> <p>9.5 Summary 134</p> <p><b>10 Control of a DFIG Based Wind Turbine as a VSG (DFIG-VSG) </b><b>135</b></p> <p>10.1 Introduction 135</p> <p>10.2 DFIG Based Wind Turbines 137</p> <p>10.3 Differential Gears and Ancient Chinese South-pointing Chariots 138</p> <p>10.4 Analogy between a DFIG and Differential Gears 139</p> <p>10.5 Control of a Grid-side Converter 140</p> <p>10.5.1 DC-bus Voltage Control 141</p> <p>10.5.2 Unity Power Factor Control 141</p> <p>10.5.3 Self-synchronization 142</p> <p>10.6 Control of the Rotor-Side Converter 142</p> <p>10.6.1 Frequency Control 143</p> <p>10.6.2 Voltage Control 143</p> <p>10.6.3 Self-synchronization 144</p> <p>10.7 Regulation of System Frequency and Voltage 145</p> <p>10.8 Simulation Results 146</p> <p>10.9 Experimental Results 150</p> <p>10.10 Summary 153</p> <p><b>11 Synchronverter Based Transformerless Photovoltaic Systems </b><b>155</b></p> <p>11.1 Introduction 155</p> <p>11.2 Leakage Currents and Grounding of Grid-tied Converters 156</p> <p>11.2.1 Ground, Grounding, and Grounded Systems 156</p> <p>11.2.2 Leakage Currents in a Grid-tied Converter 158</p> <p>11.2.3 Benefits of Providing a Common AC and DC Ground 159</p> <p>11.3 Operation of a Conventional Half-bridge Inverter 160</p> <p>11.3.1 Reduction of Leakage Currents 161</p> <p>11.3.2 Output Voltage Range 161</p> <p>11.4 A Transformerless PV Inverter 161</p> <p>11.4.1 Topology 161</p> <p>11.4.2 Control of the Neutral Leg 161</p> <p>11.4.3 Control of the Inversion Leg as a VSM 164</p> <p>11.5 Real-time Simulation Results 165</p> <p>11.6 Summary 167</p> <p><b>12 Synchronverter Based STATCOM without an Dedicated Synchronization Unit </b><b>169</b></p> <p>12.1 Introduction 169</p> <p>12.2 Conventional Control of STATCOM 170</p> <p>12.2.1 Operational Principles 171</p> <p>12.2.2 Typical Control Strategy 172</p> <p>12.3 Synchronverter Based Control 173</p> <p>12.3.1 Regulation of the DC-bus Voltage and Synchronization with the Grid 173</p> <p>12.3.2 Operation in the <i>Q</i>-mode to Regulate the Reactive Power 175</p> <p>12.3.3 Operation in the <i>V</i>-mode to Regulate the PCC Voltage 176</p> <p>12.3.4 Operation in the <i>V</i><sub>D</sub>-mode to Droop the Voltage 176</p> <p>12.4 Simulation Results 177</p> <p>12.4.1 System Description 177</p> <p>12.4.2 Connection to the Grid 179</p> <p>12.4.3 Normal Operation in Different Modes 180</p> <p>12.4.4 Operation under Extreme Conditions 181</p> <p>12.5 Summary 185</p> <p><b>13 Synchronverters with Bounded Frequency and Voltage </b><b>187</b></p> <p>13.1 Introduction 187</p> <p>13.2 Model of the Original Synchronverter 188</p> <p>13.3 Achieving Bounded Frequency and Voltage 189</p> <p>13.3.1 Control Design 190</p> <p>13.3.2 Existence of a Unique Equilibrium 193</p> <p>13.3.3 Convergence to the Equilibrium 197</p> <p>13.4 Real-time Simulation Results 199</p> <p>13.5 Summary 202</p> <p><b>14 Virtual Inertia, Virtual Damping, and Fault Ride-through </b><b>203</b></p> <p>14.1 Introduction 203</p> <p>14.2 Inertia, the Inertia Time Constant, and the Inertia Constant 204</p> <p>14.3 Limitation of the Inertia of a Synchronverter 206</p> <p>14.4 Reconfiguration of the Inertia Time Constant 210</p> <p>14.4.1 Design and Outcome 210</p> <p>14.4.2 What is the Catch? 211</p> <p>14.5 Reconfiguration of the Virtual Damping 212</p> <p>14.5.1 Through Impedance Scaling with an Inner-loop Voltage Controller 213</p> <p>14.5.2 Through Impedance Insertion with an Inner-loop Current Controller 214</p> <p>14.6 Fault Ride-through 214</p> <p>14.6.1 Analysis 214</p> <p>14.6.2 Recommended Design 215</p> <p>14.7 Simulation Results 215</p> <p>14.7.1 A Single VSM 216</p> <p>14.7.2 Two VSMs in Parallel Operation 217</p> <p>14.8 Experimental Results 221</p> <p>14.8.1 A Single VSM 221</p> <p>14.8.2 Two VSMs in Parallel Operation 222</p> <p>14.9 Summary 225</p> <p><b>Part III 2G VSM: Robust Droop Controller </b><b>227</b></p> <p><b>15 Synchronization Mechanism of Droop Control </b><b>229</b></p> <p>15.1 Brief Review of Phase-Locked Loops (PLLs) 229</p> <p>15.1.1 Basic PLL 229</p> <p>15.1.2 Enhanced PLL (EPLL) 230</p> <p>15.2 Brief Review of Droop Control 232</p> <p>15.3 Structural Resemblance between Droop Control and PLL 234</p> <p>15.3.1 When the Impedance is Inductive 234</p> <p>15.3.2 When the Impedance is Resistive 236</p> <p>15.4 Operation of a Droop Controller as a Synchronization Unit 238</p> <p>15.5 Experimental Results 239</p> <p>15.5.1 Synchronization with the Grid 239</p> <p>15.5.2 Connection to the Grid 240</p> <p>15.5.3 Operation in the Droop Mode 241</p> <p>15.5.4 Robustness of Synchronization 241</p> <p>15.5.5 Change in the Operation Mode 242</p> <p>15.6 Summary 243</p> <p><b>16 Robust Droop Control </b><b>245</b></p> <p>16.1 Control of Inverter Output Impedance 245</p> <p>16.1.1 Inverters with Inductive Output Impedances (L-inverters) 245</p> <p>16.1.2 Inverters with Resistive Output Impedances (R-inverters) 246</p> <p>16.1.3 Inverters with Capacitive Output Impedances (C-inverters) 247</p> <p>16.2 Inherent Limitations of Conventional Droop Control 248</p> <p>16.2.1 Basic Principle 248</p> <p>16.2.2 Experimental Phenomena 250</p> <p>16.2.3 Real Power Sharing 251</p> <p>16.2.4 Reactive Power Sharing 252</p> <p>16.3 Robust Droop Control of R-inverters 252</p> <p>16.3.1 Control Strategy 252</p> <p>16.3.2 Error due to Inaccurate Voltage Measurements 253</p> <p>16.3.3 Voltage Regulation 254</p> <p>16.3.4 Error due to the Global Settings for <i>E</i><sup>∗</sup> and <i>𝜔</i><sup>∗</sup> 254</p> <p>16.3.5 Experimental Results 255</p> <p>16.4 Robust Droop Control of C-inverters 261</p> <p>16.4.1 Control Strategy 261</p> <p>16.4.2 Experimental Results 262</p> <p>16.5 Robust Droop Control of L-inverters 262</p> <p>16.5.1 Control Strategy 262</p> <p>16.5.2 Experimental Results 265</p> <p>16.6 Summary 268</p> <p><b>17 Universal Droop Control </b><b>269</b></p> <p>17.1 Introduction 269</p> <p>17.2 Further Insights into Droop Control 270</p> <p>17.2.1 Parallel Operation of Inverters with the Same Type of Impedance 271</p> <p>17.2.2 Parallel Operation of L-, R-, and R<sub>L</sub>-inverters 272</p> <p>17.2.3 Parallel Operation of R<sub>C</sub>-, R-, and C-inverters 273</p> <p>17.3 Universal Droop Controller 275</p> <p>17.3.1 Basic Principle 275</p> <p>17.3.2 Implementation 276</p> <p>17.4 Real-time Simulation Results 277</p> <p>17.5 Experimental Results 277</p> <p>17.5.1 Case I: Parallel Operation of L- and C-inverters 277</p> <p>17.5.2 Case II: Parallel Operation of L-, C-, and R-inverters 279</p> <p>17.6 Summary 281</p> <p><b>18 Self-synchronized Universal Droop Controller </b><b>283</b></p> <p>18.1 Description of the Controller 283</p> <p>18.2 Operation of the Controller 285</p> <p>18.2.1 Self-synchronization Mode 285</p> <p>18.2.2 Set Mode (<i>P</i>-mode and <i>Q</i>-mode) 286</p> <p>18.2.3 Droop Mode (<i>P</i><sub>D</sub>-mode and <i>Q</i><sub>D</sub>-mode) 286</p> <p>18.3 Experimental Results 287</p> <p>18.3.1 R-inverter with Self-synchronized Universal Droop Control 288</p> <p>18.3.2 L-inverter with Self-synchronized Universal Droop Control 290</p> <p>18.3.3 L-inverter with Self-synchronized Robust Droop Control 294</p> <p>18.4 Real-time Simulation Results from a Microgrid 297</p> <p>18.5 Summary 300</p> <p><b>19 Droop-Controlled Loads for Continuous Demand Response </b><b>301</b></p> <p>19.1 Introduction 301</p> <p>19.2 Control Framework with a Three-port Converter 302</p> <p>19.2.1 Generation of the Real Power Reference 302</p> <p>19.2.2 Regulation of the Power Drawn from the Grid 304</p> <p>19.2.3 Analysis of the Operation Modes 305</p> <p>19.2.4 Determination of the Capacitance for Grid Support 306</p> <p>19.3 An Illustrative Implementation with the <i>𝜃</i>-converter 308</p> <p>19.3.1 Brief Description about the <i>𝜃</i>-converter 309</p> <p>19.3.2 Control of the Neutral Leg 310</p> <p>19.3.3 Control of the Conversion Leg 311</p> <p>19.4 Experimental Results 311</p> <p>19.4.1 Design of the Experimental System 311</p> <p>19.4.2 Steady-state Performance 312</p> <p>19.4.3 Transient Performance 315</p> <p>19.4.4 Capacity Potential 317</p> <p>19.4.5 Comparative Study 318</p> <p>19.5 Summary 319</p> <p><b>20 Current-limiting Universal Droop Controller </b><b>321</b></p> <p>20.1 Introduction 321</p> <p>20.2 System Modeling 322</p> <p>20.3 Control Design 323</p> <p>20.3.1 Structure 323</p> <p>20.3.2 Implementation 323</p> <p>20.4 System Analysis 326</p> <p>20.4.1 Current-limiting Property 326</p> <p>20.4.2 Closed-loop Stability 327</p> <p>20.4.3 Selection of Control Parameters 328</p> <p>20.5 Practical Implementation 329</p> <p>20.6 Operation under Grid Variations and Faults 330</p> <p>20.7 Experimental Results 331</p> <p>20.7.1 Operation under Normal Conditions 332</p> <p>20.7.2 Operation under Grid Faults 334</p> <p>20.8 Summary 338</p> <p><b>Part IV 3G VSM: Cybersync Machines </b><b>339</b></p> <p><b>21 Cybersync Machines </b><b>341</b></p> <p>21.1 Introduction 341</p> <p>21.2 Passivity and Port-Hamiltonian Systems 343</p> <p>21.2.1 Passive Systems 343</p> <p>21.2.2 Port-Hamiltonian Systems 343</p> <p>21.2.3 Passivity of Interconnected Passive Systems 345</p> <p>21.3 System Modeling 346</p> <p>21.4 Control Framework 348</p> <p>21.4.1 The Engendering Block Σ<sub>e</sub> 349</p> <p>21.4.2 Generation of the Desired Frequency <i>𝜔</i><sub>d</sub> and Flux <i>𝜑</i><sub>d</sub> 350</p> <p>21.4.3 Design of Σ<i><sub>𝜔 </sub></i>and Σ<i><sub>𝜑</sub> </i>to Obtain a Passive Σ<sub>C</sub> 351</p> <p>21.5 Passivity of the Controller 352</p> <p>21.5.1 Losslessness of the Interconnection Block Σ<sub>I</sub> 352</p> <p>21.5.2 Passivity of the Cascade of Σ<sub>C</sub> and Σ<sub>I</sub> 354</p> <p>21.6 Passivity of the Closed-loop System 355</p> <p>21.7 Sample Implementations for Blocks Σ<i><sub>𝜔</sub> </i>and Σ<i><sub>𝜑</sub> </i>355</p> <p>21.7.1 Using the Standard Integral Controller (IC) 355</p> <p>21.7.2 Using a Static Controller 356</p> <p>21.8 Self-Synchronization and Power Regulation 357</p> <p>21.9 Simulation Results 358</p> <p>21.9.1 Self-synchronization 360</p> <p>21.9.2 Operation after Connection to the Grid 360</p> <p>21.10 Experimental Results 362</p> <p>21.10.1 Self-synchronization 362</p> <p>21.10.2 Operation after Connection to the Grid 363</p> <p>21.11 Summary 364</p> <p><b>Part V Case Studies </b><b>365</b></p> <p><b>22 A Single-node System </b><b>367</b></p> <p>22.1 SYNDEM Smart Grid Research and Educational Kit 367</p> <p>22.1.1 Overview 367</p> <p>22.1.2 Hardware Structure 368</p> <p>22.1.3 Sample Conversion Topologies Attainable 369</p> <p>22.2 Details of the Single-Node SYNDEM System 375</p> <p>22.2.1 Description of the System 375</p> <p>22.2.2 Experimental Results 377</p> <p>22.3 Summary 378</p> <p><b>23 A 100% Power Electronics Based SYNDEM Smart Grid Testbed </b><b>379</b></p> <p>23.1 Description of the Testbed 379</p> <p>23.1.1 Overall Structure 379</p> <p>23.1.2 VSM Topologies Adopted 379</p> <p>23.1.3 Individual Nodes 382</p> <p>23.2 Experimental Results 384</p> <p>23.2.1 Operation of Energy Bridges 384</p> <p>23.2.2 Operation of Solar Power Nodes 384</p> <p>23.2.3 Operation of Wind Power Nodes 386</p> <p>23.2.4 Operation of the DC-Load Node 388</p> <p>23.2.5 Operation of the AC-Load Node 389</p> <p>23.2.6 Operation of the Whole Testbed 391</p> <p>23.3 Summary 393</p> <p><b>24 A Home Grid </b><b>395</b></p> <p>24.1 Description of the Home Grid 395</p> <p>24.2 Results from Field Operations 396</p> <p>24.2.1 Black start and Grid forming 396</p> <p>24.2.2 From Islanded to Grid-tied Operation 399</p> <p>24.2.3 Seamless Mode Change when the Public Grid is Lost and Recovered 400</p> <p>24.2.4 Voltage/Frequency Regulation and Power Sharing 400</p> <p>24.3 Unexpected Problems Emerged During the Field Trial 402</p> <p>24.4 Summary 404</p> <p><b>25 Texas Panhandle Wind Power System </b><b>405</b></p> <p>25.1 Geographical Description 405</p> <p>25.2 System Structure 406</p> <p>25.3 Main Challenges 407</p> <p>25.4 Overview of Control Strategies Compared 407</p> <p>25.4.1 VSM Control 408</p> <p>25.4.2 DQ Control 410</p> <p>25.5 Simulation Results 411</p> <p>25.5.1 VSM Control 412</p> <p>25.5.2 DQ Control 415</p> <p>25.6 Summary and Conclusions 416</p> <p>Bibliography 417</p> <p>Index 441</p>
<p><b>QING-CHANG ZHONG, PhD, FELLOW of IEEE and IET,</b> is the Max McGraw Endowed Chair Professor in Energy and Power Engineering and Management at Illinois Institute of Technology, Chicago, USA, and the Founder and CEO of Syndem LLC, Chicago, USA. He served(s) as a Distinguished Lecturer of IEEE Power and Energy Society, IEEE Control Systems Society, and IEEE Power Electronics Society, an Associate Editor of several leading journals in control and power engineering including <i>IEEE Transactions on Automatic Control, IEEE Transactions on Industrial Electronics, IEEE Transactions on Power Electronics,</i> and<i> IEEE Transactions on Control Systems Technology</i>, a Senior Research Fellow of Royal Academy of Engineering, U.K., the U.K. Representative to European Control Association, a Steering Committee Member of IEEE Smart Grid, and a Vice-Chair of IFAC Technical Committee on Power and Energy Systems. He delivered over 200 plenary/invited talks in over 20 countries.
<p><b>Provides a holistic grid architecture and enabling technologies for next-generation smart grids</b> <p>Power systems worldwide are going through a paradigm shift from centralized generation to distributed generation. This book presents the SYNDEM (meaning synchronized and democratized) grid architecture and its technical routes to harmonize the integration of renewable energy sources, electric vehicles, storage systems, flexible loads, etc. with the synchronization mechanism of synchronous machines, to enable autonomous operation of power systems without relying on communication networks, and to advance global energy freedom for billions of people. <i>"This is a game changer for the grid. It is the sort of breakthrough — like the touch screen in smart phones — that helps to push an industry from one era to the next,"</i> as reported by Keith Schneider, a New York Times correspondent since 1982. <p>This book contains an introductory chapter and additional 24 chapters in five parts: Theoretical Framework, First-Generation VSM (virtual synchronous machines), Second-Generation VSM, Third-Generation VSM, and Case Studies. Most of the chapters include experimental results. <p>As the first book of its kind for power electronics-enabled autonomous power systems, it <ul> <li>introduces a holistic grid architecture applicable to both large and small power systems, including aircraft power systems, ship power systems, microgrids, and supergrids</li> <li>provides latest research to address the unprecedented challenges faced by power systems and to enhance grid stability, reliability, security, resiliency, and sustainability</li> <li>demonstrates how future power systems achieve harmonious interaction, prevent local faults from cascading into wide-area blackouts, and operate autonomously with minimized cyber-attacks</li> <li>highlights the significance of the SYNDEM concept for power systems and beyond</li> </ul> <p><i>Power Electronics-Enabled Autonomous Power Systems: Next Generation Smart Grids</i> is an excellent book for researchers, engineers, and students involved in energy and power systems, electrical engineering, and control engineering, and power electronics. The SYNDEM theoretical framework chapter is also suitable for policy makers, legislators, entrepreneurs, commissioners of utility commissions, energy and environmental agency staff, utility personnel, investors, consultants, and attorneys.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €