Details

Sustainable Carbon Materials from Hydrothermal Processes


Sustainable Carbon Materials from Hydrothermal Processes


1. Aufl.

from: Maria-Magdalena Titirici

125,99 €

Publisher: Wiley
Format PDF
Published: 10.06.2013
ISBN/EAN: 9781118622193
Language: englisch
Number of pages: 376

DRM-protected eBook; you will need Adobe Digital Editions and an Adobe ID to read it.

Descriptions

<p>The production of low cost and environmentally friendly high performing carbon materials is crucial for a sustainable future. <i>Sustainable Carbon Materials from Hydrothermal Processes</i> describes a sustainable and alternative technique to produce carbon from biomass in water at low temperatures, a process known as Hydrothermal Carbonization (HTC).</p> <p><i>Sustainable Carbon Materials from Hydrothermal Processes</i> presents an overview of this new and rapidly developing field, discussing various synthetic approaches, characterization of the final products, and modern fields of application for of sustainable carbon materials.</p> <p>Topics covered include:</p> <p>• Green carbon materials<br /> • Porous hydrothermal carbons<br /> • HTC for the production of valuable carbon hybrid materials<br /> • Functionalization  of hydrothermal carbon materials<br /> • Characterization of HTC materials<br /> • Applications of HTC in modern nanotechnology: Energy storage, electrocatalysis in fuel cells, photocatalysis, gas storage, water purification, sensors, bioapplications<br /> • Environmental applications of HTC technology: Biochar production, carbon sequestration, and waste conversion<br /> • Scale-up in HTC</p> <p><i>Sustainable Carbon Materials from Hydrothermal Processes</i> will serve as a comprehensive guide for students and newcomers in the field, as well as providing a valuable source of information for researchers and investors looking for alternative technologies to convert biomass into useful products.</p>
List of Contributors xi <p>Preface xiii</p> <p>1 Green Carbon 1</p> <p>Maria-Magdalena Titirici</p> <p>1.1 Introduction 1</p> <p>1.2 Green Carbon Materials 3</p> <p>1.2.1 CNTs and Graphitic Nanostructures 4</p> <p>1.2.2 Graphene, Graphene Oxide, and Highly Reduced Graphene Oxide 11</p> <p>1.2.3 Activated Carbons 14</p> <p>1.2.4 Starbons 14</p> <p>1.2.5 Use of Ionic Liquids in the Synthesis of Carbon Materials 19</p> <p>1.2.6 HTC 27</p> <p>1.3 Brief History of HTC 27</p> <p>References 30</p> <p>2 Porous Hydrothermal Carbons 37</p> <p>Robin J. White, Tim-Patrick Fellinger, Shiori Kubo, Nicolas Brun, and Maria-Magdalena Titirici</p> <p>2.1 Introduction 37</p> <p>2.2 Templating – An Opportunity for Pore Morphology Control 39</p> <p>2.2.1 Hard Templating in HTC 40</p> <p>2.2.2 Soft Templating in HTC 42</p> <p>2.2.3 Naturally Inspired Systems: Use of Natural Templates 49</p> <p>2.3 Carbon Aerogels 50</p> <p>2.3.1 Ovalbumin/Glucose-Derived HTC-Derived Carbogels 52</p> <p>2.3.2 Borax-Mediated Formation of HTC-Derived Carbogels from Glucose 56</p> <p>2.3.3 Carbogels from the Hydrothermal Treatment of Sugar and Phenolic Compounds 63</p> <p>2.3.4 Emulsion-Templated “Carbo-HIPEs” from the Hydrothermal</p> <p>Treatment of Sugar Derivatives and Phenolic Compounds 65</p> <p>2.4 Summary and Outlook 69</p> <p>References 70</p> <p>3 Porous Biomass-Derived Carbons: Activated Carbons 75</p> <p>Dolores Lozano-Castello, Juan Pablo Marco-Lozar, Camillo Falco, Maria-Magdalena Titirici, and Diego Cazorla-Amoros</p> <p>3.1 Introduction to Activated Carbons 75</p> <p>3.2 Chemical Activation of Lignocellulosic Materials 77</p> <p>3.2.1 H3PO4 Activation of Lignocellulosic Precursors 78</p> <p>3.2.2 ZnCl2 Activation of Lignocellulosic Precursors 82</p> <p>3.2.3 KOH and NaOH Activation of Lignocellulosic Precursors 84</p> <p>3.3 Activated Carbons from Hydrothermally Carbonized Organic Materials and Biomass 86</p> <p>3.3.1 Hydrochar Materials: Synthesis, Structural, and Chemical Properties 88</p> <p>3.3.2 KOH Activation of Hydrochar Materials 89</p> <p>3.4 Conclusions 95</p> <p>Acknowledgments 95</p> <p>References 96</p> <p>4 Hydrothermally Synthesized Carbonaceous Nanocomposites 101</p> <p>Bo Hu, Hai-Zhou Zhu, and Shu-Hong Yu</p> <p>4.1 Introduction 101</p> <p>4.2 HTC Synthesis of Unique Carbonaceous Nanomaterials 102</p> <p>4.2.1 Carbonaceous Nanomaterials 102</p> <p>4.2.2 Carbonaceous Nanocomposites 110</p> <p>4.3 Conclusion and Outlook 121</p> <p>Acknowledgments 121</p> <p>References 121</p> <p>5 Chemical Modification of Hydrothermal Carbonization Materials 125</p> <p>Stephanie Wohlgemuth, Hiromitsu Urakami, Li Zhao, and Maria-Magdalena Titirici</p> <p>5.1 Introduction 125</p> <p>5.2 In Situ Doping of Hydrothermal Carbons 126</p> <p>5.2.1 Nitrogen 126</p> <p>5.2.2 Sulfur 130</p> <p>5.2.3 Boron 132</p> <p>5.2.4 Organic Monomers Sources 132</p> <p>5.2.5 Properties of Heteroatom-Doped Carbon Materials 133</p> <p>5.3 Postmodification of Carbonaceous Materials 139</p> <p>5.3.1 Chemical Handles for Functionalization Present on HTC Materials 140</p> <p>5.3.2 Perspectives on HTC Postmodification Strategies 143</p> <p>References 145</p> <p>6 Characterization of Hydrothermal Carbonization Materials 151</p> <p>Niki Baccile, Jens Weber, Camillo Falco, and Maria-Magdalena Titirici<br /> <br /> 6.1 Introduction 151</p> <p>6.2 Morphology of HTC Materials 152</p> <p>6.2.1 Morphology of Glucose-Derived Hydrothermal Carbons 153</p> <p>6.2.2 Morphology of Other Carbohydrate-Derived Hydrothermal Carbons 157</p> <p>6.2.3 Morphology of Cellulose- and Biomass-Derived Hydrothermal Carbons 159</p> <p>6.3 Elemental Composition and Yields 161</p> <p>6.4 FTIR 164</p> <p>6.5 XPS: Surface Groups 165</p> <p>6.6 Zeta Potential: Surface Charge 166</p> <p>6.7 XRD: Degree of Structural Order 169</p> <p>6.8 Thermal Analysis 170</p> <p>6.9 Structure Elucidation of Carbon Materials Using Solid-State NMR Spectroscopy 172</p> <p>6.9.1 Brief Introduction to Solid-State NMR 172</p> <p>6.9.2 Solid-State NMR of Crystalline Nanocarbons: Fullerenes and Nanotubes 174</p> <p>6.9.3 Solid-State NMR Study of Biomass Derivatives and their Pyrolyzed Carbons 175</p> <p>6.9.4 Solid-State NMR Study of Hydrothermal Carbons 178</p> <p>6.10 Porosity Analysis of Hydrothermal Carbons 190</p> <p>6.10.1 Introduction and Definition of Porosity 190</p> <p>6.10.2 Gas Physisorption 191</p> <p>6.10.3 Mercury Intrusion Porosity 202</p> <p>6.10.4 Scattering Methods 204</p> <p>References 204</p> <p>7 Applications of Hydrothermal Carbon in Modern Nanotechnology 213</p> <p>Marta Sevilla, Antonio B. Fuertes, Rezan Demir-Cakan, and Maria-Magdalena Titirici</p> <p>7.1 Introduction 213</p> <p>7.2 Energy Storage 214</p> <p>7.2.1 Electrodes in Rechargeable Batteries 215</p> <p>7.2.2 Electrodes in Supercapacitors 229</p> <p>7.2.3 Heterogeneous Catalysis 234</p> <p>7.2.4 HTC-Derived Materials as Catalyst Supports 235</p> <p>7.2.5 HTC-Derived Materials with Various Functionalities and Intrinsic Catalytic Properties 239</p> <p>7.3 Electrocatalysis in Fuel Cells 241</p> <p>7.3.1 Catalyst Supports in Direct Methanol Fuel Cells 242</p> <p>7.3.2 Heteroatom-Doped Carbons with Intrinsic Catalytic Activity for the ORR 250</p> <p>7.4 Photocatalysis 255</p> <p>7.5 Gas Storage 260</p> <p>7.5.1 CO2 Capture Using HTC-Based Carbons 260</p> <p>7.5.2 Hydrogen Storage Using HTC-Based Activated Carbons 264</p> <p>7.6 Adsorption of Pollutants from Water 265</p> <p>7.6.1 Removal of Heavy Metals 265</p> <p>7.6.2 Removal of Organic Pollutants 271</p> <p>7.7 HTC-Derived Materials in Sensor Applications 272</p> <p>7.7.1 Chemical Sensors 272</p> <p>7.7.2 Gas Sensors 274</p> <p>7.8 Bioapplications 275</p> <p>7.9 Drug Delivery 276</p> <p>7.9.1 Bioimaging 279</p> <p>7.10 Conclusions and Perspectives 282</p> <p>References 283</p> <p>8 Environmental Applications of Hydrothermal Carbonization Technology: Biochar Production, Carbon Sequestration, and Waste Conversion 295</p> <p>Nicole D. Berge, Claudia Kammann, Kyoung Ro, and Judy Libra</p> <p>8.1 Introduction 295</p> <p>8.2 Waste Conversion to Useful Products 297</p> <p>8.2.1 Conversion of MSW 298</p> <p>8.2.2 Conversion of Animal Waste 302</p> <p>8.2.3 Potential Hydrochar Uses 306</p> <p>8.3 Soil Application 309</p> <p>8.3.1 History of the Idea to Sequester Carbon in Soils Using Chars/Coals 309</p> <p>8.3.2 Consideration of Hydrochar Use in Soils 311</p> <p>8.3.3 Stability of Hydrochar in Soils 311</p> <p>8.3.4 Influence of Hydrochar on Soil Fertility and Crop Yields 318</p> <p>8.3.5 Greenhouse Gas Emissions from Char-Amended Soils 323</p> <p>8.3.6 Best-Practice Considerations for Biochar/Hydrochar Soil Application 325</p> <p>8.4 HTC Technology: Commercial Status and Research Needs 325</p> <p>References 329</p> <p>9 Scale-Up in Hydrothermal Carbonization 341</p> <p>Andrea Kruse, Daniela Baris, Nicole Troger, and Peter Wieczorek</p> <p>9.1 Introduction 341</p> <p>9.2 Basic Aspects of Process Development and Upscaling 343</p> <p>9.2.1 Batch/Tubular Reactors 344</p> <p>9.2.2 CSTRs 345</p> <p>9.2.3 Product Handling 345</p> <p>9.3 Risks of Scaling-Up 346</p> <p>9.4 Lab-Scale Experiments 347</p> <p>9.4.1 Experimental 347</p> <p>9.4.2 Results and Discussion 348</p> <p>9.5 Praxis Report 348</p> <p>9.6 Conclusions 352</p> <p>References 353</p> <p>Index</p>
<p><strong>Dr. Maria-Magdalena Titirici, Max-Planck Institute of Colloids and Interfaces, Germany</strong><br />Maria-Magdalena has been working in the field of hydrothermal carbonization (HTC) since 2005. Her laboratory at the Max-Planck Institute of Colloids and Interfaces has been driving the renewed interest in HTC for the production of high-tech carbonaceous materials. Since 2005 she has published more than 40 scientific papers on this topic, including 2 reviews, as well as a book chapter.
<p>The production of low cost and environmentally friendly high performing carbon materials is crucial for a sustainable future. <i>Sustainable Carbon Materials from Hydrothermal Processes</i> describes a sustainable and alternative technique to produce carbon from biomass in water at low temperatures, a process known as Hydrothermal Carbonization (HTC).</p> <p><i>Sustainable Carbon Materials from Hydrothermal Processes</i> presents an overview of this new and rapidly developing field, discussing various synthetic approaches, characterization of the final products, and modern fields of application for of sustainable carbon materials.</p> <p>Topics covered include:</p> <ul> <li>Green carbon materials</li> <li>Porous hydrothermal carbons</li> <li>HTC for the production of valuable carbon hybrid materials</li> <li>Functionalization  of hydrothermal carbon materials</li> <li>Characterization of HTC materials</li> <li>Applications of HTC in modern nanotechnology: Energy storage, electrocatalysis in fuel cells, photocatalysis, gas storage, water purification, sensors, bioapplications</li> <li>Environmental applications of HTC technology: Biochar production, carbon sequestration, and waste conversion</li> <li>Scale-up in HTC</li> </ul> <p><i>Sustainable Carbon Materials from Hydrothermal Processes</i> will serve as a comprehensive guide for students and newcomers in the field, as well as providing a valuable source of information for researchers and investors looking for alternative technologies to convert biomass into useful products.</p>

These products might also interest you:

Hot-Melt Extrusion
Hot-Melt Extrusion
from: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
from: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
from: Wilhelm Keim
PDF ebook
99,99 €