Details

Functionalization of Semiconductor Surfaces


Functionalization of Semiconductor Surfaces


1. Aufl.

von: Franklin Tao, Steven Bernasek

147,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 02.03.2012
ISBN/EAN: 9781118199787
Sprache: englisch
Anzahl Seiten: 454

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book presents both fundamental knowledge and latest achievements of this rapidly growing field in the last decade. It presents a complete and concise picture of the the state-of-the-art in the field, encompassing the most active international research groups in the world.  Led by contributions from leading global research groups, the book discusses the functionalization of semiconductor surface. Dry organic reactions in vacuum and wet organic chemistry in solution are two major categories of strategies for functionalization that will be described.  The growth of multilayer-molecular architectures on the formed organic monolayers will be documented. The immobilization of biomolecules such as DNA on organic layers chemically attached to semiconductor surfaces will be introduced. The patterning of complex structures of organic layers and metallic nanoclusters toward sensing techniques will be presented as well.
<p>Preface xv</p> <p>Contributors xix</p> <p><b>1. Introduction 1<br /></b><i>Franklin (Feng) Tao, Yuan Zhu, and Steven L. Bernasek</i></p> <p>1.1 Motivation for a Book on Functionalization of Semiconductor Surfaces 1</p> <p>1.2 Surface Science as the Foundation of the Functionalization of Semiconductor Surfaces 2</p> <p>1.2.1 Brief Description of the Development of Surface Science 2</p> <p>1.2.2 Importance of Surface Science 3</p> <p>1.2.3 Chemistry at the Interface of Two Phases 4</p> <p>1.2.4 Surface Science at the Nanoscale 5</p> <p>1.2.5 Surface Chemistry in the Functionalization of Semiconductor Surfaces 7</p> <p>1.3 Organization of this Book 7</p> <p>References 9</p> <p><b>2. Surface Analytical Techniques 11<br /></b><i>Ying Wei Cai and Steven L. Bernasek</i></p> <p>2.1 Introduction 11</p> <p>2.2 Surface Structure 12</p> <p>2.2.1 Low-Energy Electron Diffraction 13</p> <p>2.2.2 Ion Scattering Methods 14</p> <p>2.2.3 Scanning Tunneling Microscopy and Atomic Force Microscopy 15</p> <p>2.3 Surface Composition, Electronic Structure, and Vibrational Properties 16</p> <p>2.3.1 Auger Electron Spectroscopy 16</p> <p>2.3.2 Photoelectron Spectroscopy 17</p> <p>2.3.3 Inverse Photoemission Spectroscopy 18</p> <p>2.3.4 Vibrational Spectroscopy 18</p> <p>2.3.4.1 Infrared Spectroscopy 19</p> <p>2.3.4.2 High-Resolution Electron Energy Loss Spectroscopy 19</p> <p>2.3.5 Synchrotron-Based Methods 20</p> <p>2.3.5.1 Near-Edge X-Ray Absorption Fine Structure Spectroscopy 20</p> <p>2.3.5.2 Energy Scanned PES 21</p> <p>2.3.5.3 Glancing Incidence X-Ray Diffraction 21</p> <p>2.4 Kinetic and Energetic Probes 21</p> <p>2.4.1 Thermal Programmed Desorption 22</p> <p>2.4.2 Molecular Beam Sources 22</p> <p>2.5 Conclusions 23</p> <p>References 23</p> <p><b>3. Structures of Semiconductor Surfaces and Origins of Surface Reactivity with Organic Molecules 27<br /></b><i>Yongquan Qu and Keli Han</i></p> <p>3.1 Introduction 27</p> <p>3.2 Geometry, Electronic Structure, and Reactivity of Clean Semiconductor Surfaces 28</p> <p>3.2.1 Si(100)-(2×1), Ge(100)-(2×1), and Diamond(100)-(2×1) Surfaces 29</p> <p>3.2.2 Si(111)-(7×7) Surface 33</p> <p>3.3 Geometry and Electronic Structure of H-Terminated Semiconductor Surfaces 34</p> <p>3.3.1 Preparation and Structure of H-Terminated Semiconductor Surfaces Under UHV 34</p> <p>3.3.2 Preparation and Structure of H-Terminated Semiconductor Surfaces in Solution 35</p> <p>3.3.3 Preparation and Structure of H-Terminated Semiconductor Surfaces Through Hydrogen Plasma Treatment 36</p> <p>3.3.4 Reactivity of H-Terminated Semiconductor Surface Prepared Under UHV 36</p> <p>3.3.5 Preparation and Structure of Partially H-Terminated Semiconductor Surfaces 36</p> <p>3.3.6 Reactivity of Partially H-Terminated Semiconductor Surfaces Under Vacuum 38</p> <p>3.4 Geometry and Electronic Structure of Halogen-Terminated Semiconductor Surfaces 39</p> <p>3.4.1 Preparation of Halogen-Terminated Semiconductor Surfaces Under UHV 40</p> <p>3.4.2 Preparation of Halogen-Terminated Semiconductor Surfaces from H-Terminated Semiconductor Surfaces 41</p> <p>3.5 Reactivity of Hydrogen- or Halogen-Terminated Semiconductor Surfaces in Solution 41</p> <p>3.5.1 Reactivity of Si and Ge Surfaces in Solution 41</p> <p>3.5.2 Reactivity of Diamond Surfaces in Solution 43</p> <p>3.6 Summary 45</p> <p>Acknowledgments 46</p> <p>References 46</p> <p><b>4. Pericyclic Reactions of Organic Molecules at Semiconductor Surfaces 51<br /></b><i>Keith T. Wong and Stacey F. Bent</i></p> <p>4.1 Introduction 51</p> <p>4.2 [2+2] Cycloaddition of Alkenes and Alkynes 53</p> <p>4.2.1 Ethylene 53</p> <p>4.2.2 Acetylene 57</p> <p>4.2.3 <i>Cis</i>- and <i>Trans</i>-2-Butene 58</p> <p>4.2.4 Cyclopentene 59</p> <p>4.2.5 [2+2]-Like Cycloaddition on Si(111)-(7×7) 61</p> <p>4.3 [4+2] Cycloaddition of Dienes 62</p> <p>4.3.1 1,3-Butadiene and 2,3-Dimethyl-1,3-Butadiene 63</p> <p>4.3.2 1,3-Cyclohexadiene 66</p> <p>4.3.3 Cyclopentadiene 67</p> <p>4.3.4 [4+2]-Like Cycloaddition on Si(111)-(7×7) 69</p> <p>4.4 Cycloaddition of Unsaturated Organic Molecules Containing One or More Heteroatom 71</p> <p>4.4.1 C=O-Containing Molecules 71</p> <p>4.4.2 Nitriles 78</p> <p>4.4.3 Isocyanates and Isothiocyanates 80</p> <p>4.5 Summary 81</p> <p>Acknowledgment 83</p> <p>References 83</p> <p><b>5. Chemical Binding of Five-Membered and Six-Membered Aromatic Molecules 89<br /></b><i>Franklin (Feng) Tao and Steven L. Bernasek</i></p> <p>5.1 Introduction 89</p> <p>5.2 Five-Membered Aromatic Molecules Containing One Heteroatom 89</p> <p>5.2.1 Thiophene, Furan, and Pyrrole on Si(111)-(7×7) 90</p> <p>5.2.2 Thiophene, Furan, and Pyrrole on Si(100) and Ge(100) 92</p> <p>5.3 Five-Membered Aromatic Molecules Containing Two Different Heteroatoms 95</p> <p>5.4 Benzene 98</p> <p>5.4.1 Different Binding Configurations on (100) Face of Silicon and Germanium 98</p> <p>5.4.2 Di-Sigma Binding on Si(111)-(7×7) 99</p> <p>5.5 Six-Membered Heteroatom Aromatic Molecules 100</p> <p>5.6 Six-Membered Aromatic Molecules Containing Two Heteroatoms 101</p> <p>5.7 Electronic and Structural Factors of the Semiconductor Surfaces for the Selection of Reaction Channels of Five-Membered and Six-Membered Aromatic Rings 102</p> <p>References 103</p> <p><b>6. Influence of Functional Groups in Substituted Aromatic Molecules on the Selection of Reaction</b> <b>Channel in Semiconductor Surface Functionalization 105<br /></b><i>Andrew V. Teplyakov</i></p> <p>6.1 Introduction 105</p> <p>6.1.1 Scope of this Chapter 105</p> <p>6.1.2 Structure of Most Common Elemental Semiconductor Surfaces: Comparison of Silicon with Germanium and Carbon 107</p> <p>6.1.3 Brief Overview of the Types of Chemical Reactions Relevant for Aromatic Surface Modification of Clean Semiconductor Surfaces 111</p> <p>6.2 Multifunctional Aromatic Reactions on Clean Silicon Surfaces 113</p> <p>6.2.1 Homoaromatic Compounds Without Additional Functional Groups 113</p> <p>6.2.2 Functionalized Aromatics 116</p> <p>6.2.2.1 Dissociative Addition 116</p> <p>6.2.2.2 Cycloaddition 120</p> <p>6.2.3 Heteroaromatics: Aromaticity as a Driving Force in Surface Processes 130</p> <p>6.2.4 Chemistry of Aromatic Compounds on Partially Hydrogen-Covered Silicon Surfaces 137</p> <p>6.2.5 Delivery of Aromatic Groups onto a Fully Hydrogen Covered Silicon Surface 147</p> <p>6.2.5.1 Hydrosilylation 147</p> <p>6.2.5.2 Cyclocondensation 148</p> <p>6.2.6 Delivery of Aromatic Compounds onto Protected Silicon Substrates 150</p> <p>6.3 Summary 151</p> <p>Acknowledgments 152</p> <p>References 152</p> <p><b>7. Covalent Binding of Polycyclic Aromatic Hydrocarbon Systems 163<br /></b><i>Kian Soon Yong and Guo-Qin Xu</i></p> <p>7.1 Introduction 163</p> <p>7.2 PAHs on Si(100)-(2×1) 165</p> <p>7.2.1 Naphthalene and Anthracene on Si(100)-(2×1) 165</p> <p>7.2.2 Tetracene on Si(100)-(2×1) 167</p> <p>7.2.3 Pentacene on Si(100)-(2×1) 169</p> <p>7.2.4 Perylene on Si(100)-(2×1) 172</p> <p>7.2.5 Coronene on Si(100)-(2×1) 173</p> <p>7.2.6 Dibenzo[<i>a</i>, <i>j</i> ]coronene on Si(100)-(2×1) 174</p> <p>7.2.7 Acenaphthylene on Si(100)-(2×1) 175</p> <p>7.3 PAHs on Si(111)-(7×7) 176</p> <p>7.3.1 Naphthalene on Si(111)-(7×7) 176</p> <p>7.3.2 Tetracene on Si(111)-(7×7) 179</p> <p>7.3.3 Pentacene on Si(111)-(7×7) 184</p> <p>7.4 Summary 189</p> <p>References 190</p> <p><b>8. Dative Bonding of Organic Molecules 193<br /></b><i>Young Hwan Min, Hangil Lee, Do Hwan Kim, and Sehun Kim</i></p> <p>8.1 Introduction 193</p> <p>8.1.1 What is Dative Bonding? 193</p> <p>8.1.2 Periodic Trends in Dative Bond Strength 194</p> <p>8.1.3 Examples of Dative Bonding: Ammonia and Phosphine on Si(100) and Ge(100) 197</p> <p>8.2 Dative Bonding of Lewis Bases (Nucleophilic) 198</p> <p>8.2.1 Aliphatic Amines 198</p> <p>8.2.1.1 Primary, Secondary, and Tertiary Amines on Si(100) and Ge(100) 198</p> <p>8.2.1.2 Cyclic Aliphatic Amines on Si(100) and Ge(100) 202</p> <p>8.2.1.3 Ethylenediamine on Ge(100) 204</p> <p>8.2.2 Aromatic Amines 206</p> <p>8.2.2.1 Aniline on Si(100) and Ge(100) 207</p> <p>8.2.2.2 Five-Membered Heteroaromatic Amines: Pyrrole on Si(100) and Ge(100) 209</p> <p>8.2.2.3 Six-Membered Heteroaromatic Amines 211</p> <p>8.2.3 O-Containing Molecules 218</p> <p>8.2.3.1 Alcohols on Si(100) and Ge(100) 218</p> <p>8.2.3.2 Ketones on Si(100) and Ge(100) 219</p> <p>8.2.3.3 Carboxyl Acids on Si(100) and Ge(100) 220</p> <p>8.2.4 S-Containing Molecules 223</p> <p>8.2.4.1 Thiophene on Si(100) and Ge(100) 223</p> <p>8.3 Dative Bonding of Lewis Acids (Electrophilic) 225</p> <p>8.4 Summary 226</p> <p>References 229</p> <p><b>9. Ab Initio Molecular Dynamics Studies of Conjugated Dienes on Semiconductor Surfaces 233<br /></b><i>Mark E. Tuckerman and Yanli Zhang</i></p> <p>9.1 Introduction 233</p> <p>9.2 Computational Methods 234</p> <p>9.2.1 Density Functional Theory 235</p> <p>9.2.2 Ab Initio Molecular Dynamics 237</p> <p>9.2.3 Plane Wave Bases and Surface Boundary Conditions 239</p> <p>9.2.4 Electron Localization Methods 244</p> <p>9.3 Reactions on the Si(100)-(2×1) Surface 247</p> <p>9.3.1 Attachment of 1,3-Butadiene to the Si(100)-(2×1) Surface 249</p> <p>9.3.2 Attachment of 1,3-Cyclohexadiene to the Si(100)-(2×1) Surface 257</p> <p>9.4 Reactions on the SiC(100)-(3×2) Surface 263</p> <p>9.5 Reactions on the SiC(100)-(2×2) Surface 266</p> <p>9.6 Calculation of STM Images: Failure of Perturbative Techniques 270</p> <p>References 273</p> <p><b>10. Formation of Organic Nanostructures on Semiconductor Surfaces 277<br /></b><i>Md. Zakir Hossain and Maki Kawai</i></p> <p>10.1 Introduction 277</p> <p>10.2 Experimental 278</p> <p>10.3 Results and Discussion 279</p> <p>10.3.1 Individual 1D Nanostructures on Si(100)–H: STM Study 279</p> <p>10.3.1.1 Styrene and Its Derivatives on Si(100)-(2×1)–H 279</p> <p>10.3.1.2 Long-Chain Alkenes on Si(100)-(2×1)–H 284</p> <p>10.3.1.3 Cross-Row Nanostructure 285</p> <p>10.3.1.4 Aldehyde and Ketone: Acetophenone –A Unique Example 287</p> <p>10.3.2 Interconnected Junctions of 1D Nanostructures 292</p> <p>10.3.2.1 Perpendicular Junction 292</p> <p>10.3.2.2 One-Dimensional Heterojunction 295</p> <p>10.3.3 UPS of 1D Nanostructures on the Surface 296</p> <p>10.4 Conclusions 298</p> <p>Acknowledgment 299</p> <p>References 299</p> <p><b>11. Formation of Organic Monolayers Through Wet Chemistry 301<br /></b><i>Damien Aureau and Yves J. Chabal</i></p> <p>11.1 Introduction, Motivation, and Scope of Chapter 301</p> <p>11.1.1 Background 301</p> <p>11.1.2 Formation of H-Terminated Silicon Surfaces 303</p> <p>11.1.3 Stability of H-Terminated Silicon Surfaces 304</p> <p>11.1.4 Approach 305</p> <p>11.1.5 Outline 305</p> <p>11.2 Techniques Characterizing Wet Chemically Functionalized Surfaces 307</p> <p>11.2.1 X-Ray Photoelectron Spectroscopy 307</p> <p>11.2.2 Infrared Absorption Spectroscopy 308</p> <p>11.2.3 Secondary Ion Mass Spectrometry 310</p> <p>11.2.4 Surface-Enhanced Raman Spectroscopy 311</p> <p>11.2.5 Spectroscopic Ellipsometry 311</p> <p>11.2.6 X-Ray Reflectivity 312</p> <p>11.2.7 Contact Angle, Wettability 312</p> <p>11.2.8 Photoluminescence 312</p> <p>11.2.9 Electrical Measurements 313</p> <p>11.2.10 Imaging Techniques 313</p> <p>11.2.11 Electron and Atom Diffraction Methods 313</p> <p>11.3 Hydrosilylation of H-Terminated Surfaces 314</p> <p>11.3.1 Catalyst-Aided Reactions 315</p> <p>11.3.2 Photochemically Induced Reactions 318</p> <p>11.3.3 Thermally Activated Reactions 320</p> <p>11.4 Electrochemistry of H-Terminated Surfaces 322</p> <p>11.4.1 Cathodic Grafting 322</p> <p>11.4.2 Anodic Grafting 323</p> <p>11.5 Use of Halogen-Terminated Surfaces 324</p> <p>11.6 Alcohol Reaction with H-Terminated Si Surfaces 327</p> <p>11.7 Outlook 331</p> <p>Acknowledgments 331</p> <p>References 332</p> <p><b>12. Chemical Stability of Organic Monolayers Formed in Solution 339<br /></b><i>Leslie E. O’Leary, Erik Johansson, and Nathan S. Lewis</i></p> <p>12.1 Reactivity of H-Terminated Silicon Surfaces 339</p> <p>12.1.1 Background 339</p> <p>12.1.1.1 Synthesis of H-Terminated Si Surfaces 339</p> <p>12.1.2 Reactivity of H-Si 342</p> <p>12.1.2.1 Aqueous Acidic Media 342</p> <p>12.1.2.2 Aqueous Basic Media 343</p> <p>12.1.2.3 Oxygen-Containing Environments 344</p> <p>12.1.2.4 Alcohols 344</p> <p>12.1.2.5 Metals 345</p> <p>12.2 Reactivity of Halogen-Terminated Silicon Surfaces 347</p> <p>12.2.1 Background 347</p> <p>12.2.1.1 Synthesis of Cl-Terminated Surfaces 348</p> <p>12.2.1.2 Synthesis of Br-Terminated Surfaces 350</p> <p>12.2.1.3 Synthesis of I-Terminated Surfaces 350</p> <p>12.2.2 Reactivity of Halogenated Silicon Surfaces 351</p> <p>12.2.2.1 Halogen Etching 351</p> <p>12.2.2.2 Aqueous Media 352</p> <p>12.2.2.3 Oxygen-Containing Environments 353</p> <p>12.2.2.4 Alcohols 355</p> <p>12.2.2.5 Other Solvents 356</p> <p>12.2.2.6 Metals 359</p> <p>12.3 Carbon-Terminated Silicon Surfaces 360</p> <p>12.3.1 Introduction 360</p> <p>12.3.2 Structural and Electronic Characterization of Carbon-Terminated Silicon 361</p> <p>12.3.2.1 Structural Characterization of CH<sub>3</sub>-Si(111) 362</p> <p>12.3.2.2 Structural Characterization of Other Si-C Functionalized Surfaces 362</p> <p>12.3.2.3 Electronic Characterization of Alkylated Silicon 364</p> <p>12.3.3 Reactivity of C-Terminated Silicon Surfaces 366</p> <p>12.3.3.1 Thermal Stability of Alkylated Silicon 367</p> <p>12.3.3.2 Stability in Aqueous Conditions 367</p> <p>12.3.3.3 Stability of Si-C Terminated Surfaces in Air 371</p> <p>12.3.3.4 Stability of Si-C Terminated Surfaces in Alcohols 372</p> <p>12.3.3.5 Stability in Other Common Solvents 372</p> <p>12.3.3.6 Silicon–Organic Monolayer–Metal Systems 374</p> <p>12.4 Applications and Strategies for Functionalized Silicon Surfaces 376</p> <p>12.4.1 Tethered Redox Centers 378</p> <p>12.4.2 Conductive Polymer Coatings 379</p> <p>12.4.3 Metal Films 382</p> <p>12.4.3.1 Stability Enhancement 382</p> <p>12.4.3.2 Deposition on Organic Monolayers 382</p> <p>12.4.4 Semiconducting and Nonmetallic Coatings 389</p> <p>12.4.4.1 Stability Enhancement 389</p> <p>12.4.4.2 Deposition on Si by ALD 389</p> <p>12.5 Conclusions 391</p> <p>References 392</p> <p><b>13. Immobilization of Biomolecules at Semiconductor Interfaces 401<br /></b><i>Robert J. Hamers</i></p> <p>13.1 Introduction 401</p> <p>13.2 Molecular and Biomolecular Interfaces to Semiconductors 402</p> <p>13.2.1 Functionalization Strategies 402</p> <p>13.2.2 Silane Derivatives 403</p> <p>13.2.3 Phosphonic Acids 406</p> <p>13.2.4 Alkene Grafting 406</p> <p>13.3 DNA-Modified Semiconductor Surfaces 407</p> <p>13.3.1 DNA-Modified Silicon 407</p> <p>13.3.2 DNA-Modified Diamond 411</p> <p>13.3.3 DNA on Metal Oxides 412</p> <p>13.4 Proteins at Surfaces 415</p> <p>13.4.1 Protein-Resistant Surfaces 415</p> <p>13.4.2 Protein-Selective Surfaces 417</p> <p>13.5 Covalent Biomolecular Interfaces for Direct Electrical Biosensing 418</p> <p>13.5.1 Detection Methods on Planar Surfaces 418</p> <p>13.5.2 Sensitivity Considerations 420</p> <p>13.6 Nanowire Sensors 422</p> <p>13.7 Summary 422</p> <p>Acknowledgments 423</p> <p>References 423</p> <p><b>14. Perspective and Challenge 429<br /></b><i>Franklin (Feng) Tao and Steven L. Bernasek</i></p> <p>Index 431</p>
<p><b>FRANKLIN (FENG) TAO, P<small>H</small>D,</b> is Assistant Professor of Chemistry at the University of Notre Dame. His research group is actively involved in investigations of surface science, heterogeneous catalysis for efficient energy conversion, nanomaterials, and in situ studies of catalysts. Dr. Tao is the author of about 70 research articles and the recipient of the International Union of Pure and Applied Chemistry Prize for Young Chemists. <p><b>STEVEN L. BERNASEK, P<small>H</small>D,</b> is Professor of Chemistry at Princeton University. His research focuses on chirality in self-assembled monolayers, surface functionalization and modification, organometallic surface chemistry, and dynamics of gas-surface interactions. Dr. Bernasek is the author of more than 200 research articles. He is also the recipient of several awards, including the ACS Arthur W. Adamson Award for Distinguished Service in the Advancement of Surface Chemistry.
<p><b>Discover how an emerging field is leading to a new generation of enhanced semiconductors</b> <p>Written by international leaders in the field, this book provides a complete and current review of the latest findings, practical applications, and active research in the organic functionalization of semiconductor surfaces. Readers will discover how the characteristics and properties of various organic functional groups when combined with inorganic semiconductor surfaces can lead to increasingly enhanced functional materials, including microchips and biosensors. <p><i>Functionalization of Semiconductor Surfaces</i> addresses all the important research questions in the field, starting with the basics and then advancing to more complex functionalization chemistry. The text begins with an introduction to the field and a discussion of essential experimental methods. Next, it presents: <ul> <li>Detailed descriptions of the structures of the relevant semiconductor surfaces</li> <li>Reviews of surface functionalization with progressively more complex organic functionalities</li> <li>Discussion of organic and biomaterial functionalization of semiconductor surfaces, including a chapter examining theoretical studies of these systems</li> <li>Both dry (vacuum) functionalization and wet chemical functionalization approaches</li> </ul> <p>Clear illustrations of structures and mechanistic pathways enable readers to understand the underlying principles of organic functionalization of semiconductor surfaces and how these principles work in practice. Extensive bibliographies at the end of each chapter serve as a gateway to the field's growing body of literature. <p>This book is invaluable for chemists, engineers, and students who are involved in investigations of the surface chemistry of semiconductors and organic functionalization of semiconductor surfaces. Moreover, the book sets the foundation for the development of the next generation of microelectronic computing, micro- and optoelectronic devices, microelectromechanical machines, three-dimensional memory chips, silicon-based nano sensors, and nano-patterned biomaterials.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
59,95 €