Details

Diode Lasers and Photonic Integrated Circuits


Diode Lasers and Photonic Integrated Circuits


Wiley Series in Microwave and Optical Engineering, Band 218 2. Aufl.

von: Larry A. Coldren, Scott W. Corzine, Milan L. Mashanovitch

141,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 07.09.2011
ISBN/EAN: 9781118148198
Sprache: englisch
Anzahl Seiten: 752

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<i>Diode Lasers and Photonic Integrated Circuits</i>, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers. Appendices will also be expanded to include quantum-dot issues and more on the relation between spontaneous emission and gain.
<p>Preface xvii</p> <p>Acknowledgments xxi</p> <p>List of Fundamental Constants xxiii</p> <p><b>1 Ingredients 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Energy Levels and Bands in Solids 5</p> <p>1.3 Spontaneous and Stimulated Transitions: The Creation of Light 7</p> <p>1.4 Transverse Confinement of Carriers and Photons in Diode Lasers: The Double Heterostructure 10</p> <p>1.5 Semiconductor Materials for Diode Lasers 13</p> <p>1.6 Epitaxial Growth Technology 20</p> <p>1.7 Lateral Confinement of Current, Carriers, and Photons for Practical Lasers 24</p> <p>1.8 Practical Laser Examples 31</p> <p>References 39</p> <p>Reading List 40</p> <p>Problems 40</p> <p><b>2 A Phenomenological Approach to Diode Lasers 45</b></p> <p>2.1 Introduction 45</p> <p>2.2 Carrier Generation and Recombination in Active Regions 46</p> <p>2.3 Spontaneous Photon Generation and LEDs 49</p> <p>2.4 Photon Generation and Loss in Laser Cavities 52</p> <p>2.5 Threshold or Steady-State Gain in Lasers 55</p> <p>2.6 Threshold Current and Power Out Versus Current 60</p> <p>2.6.1 Basic P–I Characteristics 60</p> <p>2.6.2 Gain Models and Their Use in Designing Lasers 64</p> <p>2.7 Relaxation Resonance and Frequency Response 70</p> <p>2.8 Characterizing Real Diode Lasers 74</p> <p>2.8.1 Internal Parameters for In-Plane Lasers: <i><sub>‹</sub>α<sub>i</sub></i><i><sub>›</sub></i>, <i>η<sub>i</sub> </i>, and <i>g </i>versus <i>J </i>75</p> <p>2.8.2 Internal Parameters for VCSELs: <i>η<sub>i</sub> </i>and <i>g </i>versus <i>J</i>, <i><sub>‹</sub>α<sub>i</sub></i><i><sub>›</sub></i>, and <i>α<sub>m</sub> </i>78</p> <p>2.8.3 Efficiency and Heat Flow 79</p> <p>2.8.4 Temperature Dependence of Drive Current 80</p> <p>2.8.5 Derivative Analysis 84</p> <p>References 86</p> <p>Reading List 87</p> <p>Problems 87</p> <p><b>3 Mirrors and Resonators for Diode Lasers 91</b></p> <p>3.1 Introduction 91</p> <p>3.2 Scattering Theory 92</p> <p>3.3 S and T Matrices for Some Common Elements 95</p> <p>3.3.1 The Dielectric Interface 96</p> <p>3.3.2 Transmission Line with No Discontinuities 98</p> <p>3.3.3 Dielectric Segment and the Fabry–Perot Etalon 100</p> <p>3.3.4 S-Parameter Computation Using Mason’s Rule 104</p> <p>3.3.5 Fabry–Perot Laser 105</p> <p>3.4 Three- and Four-Mirror Laser Cavities 107</p> <p>3.4.1 Three-Mirror Lasers 107</p> <p>3.4.2 Four-Mirror Lasers 111</p> <p>3.5 Gratings 113</p> <p>3.5.1 Introduction 113</p> <p>3.5.2 Transmission Matrix Theory of Gratings 115</p> <p>3.5.3 Effective Mirror Model for Gratings 121</p> <p>3.6 Lasers Based on DBR Mirrors 123</p> <p>3.6.1 Introduction 123</p> <p>3.6.2 Threshold Gain and Power Out 124</p> <p>3.6.3 Mode Selection in DBR-Based Lasers 127</p> <p>3.6.4 VCSEL Design 128</p> <p>3.6.5 In-Plane DBR Lasers and Tunability 135</p> <p>3.6.6 Mode Suppression Ratio in DBR Laser 139</p> <p>3.7 DFB Lasers 141</p> <p>3.7.1 Introduction 141</p> <p>3.7.2 Calculation of the Threshold Gains and Wavelengths 143</p> <p>3.7.3 On Mode Suppression in DFB Lasers 149</p> <p>References 151</p> <p>Reading List 151</p> <p>Problems 151</p> <p><b>4 Gain and Current Relations 157</b></p> <p>4.1 Introduction 157</p> <p>4.2 Radiative Transitions 158</p> <p>4.2.1 Basic Definitions and Fundamental Relationships 158</p> <p>4.2.2 Fundamental Description of the Radiative Transition Rate 162</p> <p>4.2.3 Transition Matrix Element 165</p> <p>4.2.4 Reduced Density of States 170</p> <p>4.2.5 Correspondence with Einstein’s Stimulated Rate Constant 174</p> <p>4.3 Optical Gain 174</p> <p>4.3.1 General Expression for Gain 174</p> <p>4.3.2 Lineshape Broadening 181</p> <p>4.3.3 General Features of the Gain Spectrum 185</p> <p>4.3.4 Many-Body Effects 187</p> <p>4.3.5 Polarization and Piezoelectricity 190</p> <p>4.4 Spontaneous Emission 192</p> <p>4.4.1 Single-Mode Spontaneous Emission Rate 192</p> <p>4.4.2 Total Spontaneous Emission Rate 193</p> <p>4.4.3 Spontaneous Emission Factor 198</p> <p>4.4.4 Purcell Effect 198</p> <p>4.5 Nonradiative Transitions 199</p> <p>4.5.1 Defect and Impurity Recombination 199</p> <p>4.5.2 Surface and Interface Recombination 202</p> <p>4.5.3 Auger Recombination 211</p> <p>4.6 Active Materials and Their Characteristics 218</p> <p>4.6.1 Strained Materials and Doped Materials 218</p> <p>4.6.2 Gain Spectra of Common Active Materials 220</p> <p>4.6.3 Gain versus Carrier Density 223</p> <p>4.6.4 Spontaneous Emission Spectra and Current versus Carrier Density 227</p> <p>4.6.5 Gain versus Current Density 229</p> <p>4.6.6 Experimental Gain Curves 233</p> <p>4.6.7 Dependence on Well Width, Doping, and Temperature 234</p> <p>References 238</p> <p>Reading List 240</p> <p>Problems 240</p> <p><b>5 Dynamic Effects 247</b></p> <p>5.1 Introduction 247</p> <p>5.2 Review of Chapter 2 248</p> <p>5.2.1 The Rate Equations 249</p> <p>5.2.2 Steady-State Solutions 250</p> <p>Case (i): Well Below Threshold 251</p> <p>Case (ii): Above Threshold 252</p> <p>Case (iii): Below and Above Threshold 253</p> <p>5.2.3 Steady-State Multimode Solutions 255</p> <p>5.3 Differential Analysis of the Rate Equations 257</p> <p>5.3.1 Small-Signal Frequency Response 261</p> <p>5.3.2 Small-Signal Transient Response 266</p> <p>5.3.3 Small-Signal FM Response or Frequency Chirping 270</p> <p>5.4 Large-Signal Analysis 276</p> <p>5.4.1 Large-Signal Modulation: Numerical Analysis of the Multimode Rate Equations 277</p> <p>5.4.2 Mode Locking 279</p> <p>5.4.3 Turn-On Delay 283</p> <p>5.4.4 Large-Signal Frequency Chirping 286</p> <p>5.5 Relative Intensity Noise and Linewidth 288</p> <p>5.5.1 General Definition of RIN and the Spectral Density Function 288</p> <p>5.5.2 The Schawlow–Townes Linewidth 292</p> <p>5.5.3 The Langevin Approach 294</p> <p>5.5.4 Langevin Noise Spectral Densities and RIN 295</p> <p>5.5.5 Frequency Noise 301</p> <p>5.5.6 Linewidth 303</p> <p>5.6 Carrier Transport Effects 308</p> <p>5.7 Feedback Effects and Injection Locking 311</p> <p>5.7.1 Optical Feedback Effects—Static Characteristics 311</p> <p>5.7.2 Injection Locking—Static Characteristics 317</p> <p>5.7.3 Injection and Feedback Dynamic Characteristics and Stability 320</p> <p>5.7.4 Feedback Effects on Laser Linewidth 321</p> <p>References 328</p> <p>Reading List 329</p> <p>Problems 329</p> <p><b>6 Perturbation, Coupled-Mode Theory, Modal Excitations, and Applications 335</b></p> <p>6.1 Introduction 335</p> <p>6.2 Guided-Mode Power and Effective Width 336</p> <p>6.3 Perturbation Theory 339</p> <p>6.4 Coupled-Mode Theory: Two-Mode Coupling 342</p> <p>6.4.1 Contradirectional Coupling: Gratings 342</p> <p>6.4.2 DFB Lasers 353</p> <p>6.4.3 Codirectional Coupling: Directional Couplers 356</p> <p>6.4.4 Codirectional Coupler Filters and Electro-optic Switches 370</p> <p>6.5 Modal Excitation 376</p> <p>6.6 Two Mode Interference and Multimode Interference 378</p> <p>6.7 Star Couplers 381</p> <p>6.8 Photonic Multiplexers, Demultiplexers and Routers 382</p> <p>6.8.1 Arrayed Waveguide Grating De/Multiplexers and Routers 383</p> <p>6.8.2 Echelle Grating based De/Multiplexers and Routers 389</p> <p>6.9 Conclusions 390</p> <p>References 390</p> <p>Reading List 391</p> <p>Problems 391</p> <p><b>7 Dielectric Waveguides 395</b></p> <p>7.1 Introduction 395</p> <p>7.2 Plane Waves Incident on a Planar Dielectric Boundary 396</p> <p>7.3 Dielectric Waveguide Analysis Techniques 400</p> <p>7.3.1 Standing Wave Technique 400</p> <p>7.3.2 Transverse Resonance 403</p> <p>7.3.3 WKB Method for Arbitrary Waveguide Profiles 410</p> <p>7.3.4 2-D Effective Index Technique for Buried Rib Waveguides 418</p> <p>7.3.5 Analysis of Curved Optical Waveguides using Conformal Mapping 421</p> <p>7.3.6 Numerical Mode Solving Methods for Arbitrary Waveguide Profiles 424</p> <p>7.4 Numerical Techniques for Analyzing PICs 427</p> <p>7.4.1 Introduction 427</p> <p>7.4.2 Implicit Finite-Difference Beam-Propagation Method 429</p> <p>7.4.3 Calculation of Propagation Constants in a z–invariant Waveguide from a Beam Propagation Solution 432</p> <p>7.4.4 Calculation of Eigenmode Profile from a Beam Propagation Solution 434</p> <p>7.5 Goos–Hanchen Effect and Total Internal Reflection Components 434</p> <p>7.5.1 Total Internal Reflection Mirrors 435</p> <p>7.6 Losses in Dielectric Waveguides 437</p> <p>7.6.1 Absorption Losses in Dielectric Waveguides 437</p> <p>7.6.2 Scattering Losses in Dielectric Waveguides 438</p> <p>7.6.3 Radiation Losses for Nominally Guided Modes 438</p> <p>References 445</p> <p>Reading List 446</p> <p>Problems 446</p> <p><b>8 Photonic Integrated Circuits 451</b></p> <p>8.1 Introduction 451</p> <p>8.2 Tunable, Widely Tunable, and Externally Modulated Lasers 452</p> <p>8.2.1 Two- and Three-Section In-plane DBR Lasers 452</p> <p>8.2.2 Widely Tunable Diode Lasers 458</p> <p>8.2.3 Other Extended Tuning Range Diode Laser Implementations 463</p> <p>8.2.4 Externally Modulated Lasers 474</p> <p>8.2.5 Semiconductor Optical Amplifiers 481</p> <p>8.2.6 Transmitter Arrays 484</p> <p>8.3 Advanced PICs 484</p> <p>8.3.1 Waveguide Photodetectors 485</p> <p>8.3.2 Transceivers/Wavelength Converters and Triplexers 488</p> <p>8.4 PICs for Coherent Optical Communications 491</p> <p>8.4.1 Coherent Optical Communications Primer 492</p> <p>8.4.2 Coherent Detection 495</p> <p>8.4.3 Coherent Receiver Implementations 495</p> <p>8.4.4 Vector Transmitters 498</p> <p>References 499</p> <p>Reading List 503</p> <p>Problems 503</p> <p><b>Appendices</b></p> <p><b>1 Review of Elementary Solid-State Physics 509</b></p> <p>A1.1 A Quantum Mechanics Primer 509</p> <p>A1.1.1 Introduction 509</p> <p>A1.1.2 Potential Wells and Bound Electrons 511</p> <p>A1.2 Elements of Solid-State Physics 516</p> <p>A1.2.1 Electrons in Crystals and Energy Bands 516</p> <p>A1.2.2 Effective Mass 520</p> <p>A1.2.3 Density of States Using a Free-Electron (Effective Mass) Theory 522</p> <p>References 527</p> <p>Reading List 527</p> <p><b>2 Relationships between Fermi Energy and Carrier Density and Leakage 529</b></p> <p>A2.1 General Relationships 529</p> <p>A2.2 Approximations for Bulk Materials 532</p> <p>A2.3 Carrier Leakage Over Heterobarriers 537</p> <p>A2.4 Internal Quantum Efficiency 542</p> <p>References 544</p> <p>Reading List 544</p> <p><b>3 Introduction to Optical Waveguiding in Simple Double-Heterostructures 545</b></p> <p>A3.1 Introduction 545</p> <p>A3.2 Three-Layer Slab Dielectric Waveguide 546</p> <p>A3.2.1 Symmetric Slab Case 547</p> <p>A3.2.2 General Asymmetric Slab Case 548</p> <p>A3.2.3 Transverse Confinement Factor, Γ<sub>x </sub>550</p> <p>A3.3 Effective Index Technique for Two-Dimensional Waveguides 551</p> <p>A3.4 Far Fields 555</p> <p>References 557</p> <p>Reading List 557</p> <p><b>4 Density of Optical Modes, Blackbody Radiation, and Spontaneous Emission Factor 559</b></p> <p>A4.1 Optical Cavity Modes 559</p> <p>A4.2 Blackbody Radiation 561</p> <p>A4.3 Spontaneous Emission Factor, <i>β<sub>sp</sub> </i>562</p> <p>Reading List 563</p> <p><b>5 Modal Gain, Modal Loss, and Confinement Factors 565</b></p> <p>A5.1 Introduction 565</p> <p>A5.2 Classical Definition of Modal Gain 566</p> <p>A5.3 Modal Gain and Confinement Factors 568</p> <p>A5.4 Internal Modal Loss 570</p> <p>A5.5 More Exact Analysis of the Active/Passive Section Cavity 571</p> <p>A5.5.1 Axial Confinement Factor 572</p> <p>A5.5.2 Threshold Condition and Differential Efficiency 573</p> <p>A5.6 Effects of Dispersion on Modal Gain 576</p> <p><b>6 Einstein’s Approach to Gain and Spontaneous Emission 579</b></p> <p>A6.1 Introduction 579</p> <p>A6.2 Einstein <i>A </i>and <i>B </i>Coefficients 582</p> <p>A6.3 Thermal Equilibrium 584</p> <p>A6.4 Calculation of Gain 585</p> <p>A6.5 Calculation of Spontaneous Emission Rate 589</p> <p>Reading List 592</p> <p><b>7 Periodic Structures and the Transmission Matrix 593</b></p> <p>A7.1 Introduction 593</p> <p>A7.2 Eigenvalues and Eigenvectors 593</p> <p>A7.3 Application to Dielectric Stacks at the Bragg Condition 595</p> <p>A7.4 Application to Dielectric Stacks Away from the Bragg Condition 597</p> <p>A7.5 Correspondence with Approximate Techniques 600</p> <p>A7.5.1 Fourier Limit 601</p> <p>A7.5.2 Coupled-Mode Limit 602</p> <p>A7.6 Generalized Reflectivity at the Bragg Condition 603</p> <p>Reading List 605</p> <p>Problems 605</p> <p><b>8 Electronic States in Semiconductors 609</b></p> <p>A8.1 Introduction 609</p> <p>A8.2 General Description of Electronic States 609</p> <p>A8.3 Bloch Functions and the Momentum Matrix Element 611</p> <p>A8.4 Band Structure in Quantum Wells 615</p> <p>A8.4.1 Conduction Band 615</p> <p>A8.4.2 Valence Band 616</p> <p>A8.4.3 Strained Quantum Wells 623</p> <p>References 627</p> <p>Reading List 628</p> <p><b>9 Fermi’s Golden Rule 629</b></p> <p>A9.1 Introduction 629</p> <p>A9.2 Semiclassical Derivation of the Transition Rate 630</p> <p>A9.2.1 Case I: The Matrix Element-Density of Final States Product is a Constant 632</p> <p>A9.2.2 Case II: The Matrix Element-Density of Final States Product is a Delta Function 635</p> <p>A9.2.3 Case III: The Matrix Element-Density of Final States Product is a Lorentzian 636</p> <p>Reading List 637</p> <p>Problems 638</p> <p><b>10 Transition Matrix Element 639</b></p> <p>A10.1 General Derivation 639</p> <p>A10.2 Polarization-Dependent Effects 641</p> <p>A10.3 Inclusion of Envelope Functions in Quantum Wells 645</p> <p>Reading List 646</p> <p><b>11 Strained Bandgaps 647</b></p> <p>A11.1 General Definitions of Stress and Strain 647</p> <p>A11.2 Relationship Between Strain and Bandgap 650</p> <p>A11.3 Relationship Between Strain and Band Structure 655</p> <p>References 656</p> <p><b>12 Threshold Energy for Auger Processes 657</b></p> <p>A12.1 CCCH Process 657</p> <p>A12.2 CHHS and CHHL Processes 659</p> <p><b>13 Langevin Noise 661</b></p> <p>A13.1 Properties of Langevin Noise Sources 661</p> <p>A13.1.1 Correlation Functions and Spectral Densities 661</p> <p>A13.1.2 Evaluation of Langevin Noise Correlation Strengths 664</p> <p>A13.2 Specific Langevin Noise Correlations 665</p> <p>A13.2.1 Photon Density and Carrier Density Langevin Noise Correlations 665</p> <p>A13.2.2 Photon Density and Output Power Langevin Noise Correlations 666</p> <p>A13.2.3 Photon Density and Phase Langevin Noise Correlations 667</p> <p>A13.3 Evaluation of Noise Spectral Densities 669</p> <p>A13.3.1 Photon Noise Spectral Density 669</p> <p>A13.3.2 Output Power Noise Spectral Density 670</p> <p>A13.3.3 Carrier Noise Spectral Density 671</p> <p>References 672</p> <p>Problems 672</p> <p><b>14 Derivation Details for Perturbation Formulas 675</b></p> <p>Reading List 676</p> <p><b>15 Multimode Interference 677</b></p> <p>A15.1 Multimode Interference-Based Couplers 677</p> <p>A15.2 Guided-Mode Propagation Analysis 678</p> <p>A15.2.1 General Interference 679</p> <p>A15.2.2 Restricted Multimode Interference 681</p> <p>A15.3 MMI Physical Properties 682</p> <p>A15.3.1 Fabrication 682</p> <p>A15.3.2 Imaging Quality 682</p> <p>A15.3.3 Inherent Loss and Optical Bandwidth 682</p> <p>A15.3.4 Polarization Dependence 683</p> <p>A15.3.5 Reflection Properties 683</p> <p>Reference 683</p> <p><b>16 The Electro-Optic Effect 685</b></p> <p>References 692</p> <p>Reading List 692</p> <p><b>17 Solution of Finite Difference Problems 693</b></p> <p>A17.1 Matrix Formalism 693</p> <p>A17.2 One-Dimensional Dielectric Slab Example 695</p> <p>Reading List 696</p> <p>Index 697</p>
<p><b>“</b>The book is very clearly written and has many demonstrated examples. It is a valuable resource for anyone who wants to learn about basic optoelectronic devices with every-day applications.”  (<i>Optics and Photonics News</i>, 4 January 2013)</p>
<b>Larry A. Coldren</b> is the Fred Kavli Professor of Optoelectronics and Sensors at the University of California, Santa Barbara. He has authored or coauthored over a thousand journal and conference papers, seven book chapters, and a textbook, and has been issued sixty-three patents. He is a Fellow of the IEEE, OSA, and IEE, the recipient of the 2004 John Tyndall and 2009 Aron Kressel Awards, and a member of the National Academy of Engineering. <p><b>Scott W. Corzine</b> obtained his PhD from the University of California, Santa Barbara, Department of Electrical and Computer Engineering, for his work on vertical-cavity surface-emitting lasers (VCSELs). He worked for ten years at HP/Agilent Laboratories in Palo Alto, California, on VCSELs, externally modulated lasers, and quantum cascade lasers. He is currently with Infinera in Sunnyvale, California, working on photonic integrated circuits.</p> <p><b>Milan L. Mashanovitch</b> obtained his PhD in the field of photonic integrated circuits at the University of California, Santa Barbara (UCSB), in 2004. He has since been with UCSB as a scientist working on tunable photonic integrated circuits and as an adjunct professor, and with Freedom Photonics LLC, Santa Barbara, which he cofounded in 2005, working on photonic integrated circuits.</p>
<b>Current and comprehensive coverage of fundamentals and advanced topics for students and professionals</b> <p>Owing to their small size and mass-producibility, high efficiency, and amazing useful life of hundreds of years, diode lasers remain essential in data transmission and data storage applications and consumer products, while appearing in new applications, like medical imaging and remote sensing. This new edition of <i>Diode Lasers and Photonic Integrated Circuits</i> is an in-depth and fully up-to-date resource for students in electrical engineering and applied physics as well as professional engineers and researchers in optoelectronics and related fields.</p> <p><b><i>Diode Lasers and Photonic Integrated Circuits</i>, Second Edition features:</b></p> <ul> <li> <p>Expanded treatment of GaN-based materials, DFBs and VCSELs, quantum dots, mode and injection locking, tunable lasers and new photonic IC technology</p> </li> <li> <p>Many worked examples throughout that illustrate how to apply the principles and theory discussed</p> </li> <li> <p>Online access to important tools such as BPM and S and T matrix computation code, DFB laser code, mode solving code, and more</p> </li> <li> <p>Study problems and solutions at the end of each chapter</p> </li> <li> <p>Consistent notation throughout all chapters and appendices that allow for self-contained treatment and varied levels of study</p> </li> </ul> <p>Complete with extensive appendices that provide review and advanced material as well as details of derivations, <i>Diode Lasers and Photonic Integrated Circuits</i>, Second Edition is an excellent resource for anyone studying or working in the field.<br /><br />For a list of the errata please visit https://coldren.ece.ucsb.edu/</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €