Details

Physical and Chemical Equilibrium for Chemical Engineers


Physical and Chemical Equilibrium for Chemical Engineers


2. Aufl.

von: Noel de Nevers

126,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 25.04.2012
ISBN/EAN: 9781118135334
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book concentrates on the topic of physical and chemical equilibrium. Using the simplest mathematics along with numerous numerical examples it accurately and rigorously covers physical and chemical equilibrium in depth and detail.  It continues to cover the topics found in the first edition however numerous updates have been made including: Changes in naming and notation (the first edition used the traditional names for the Gibbs Free Energy and for Partial Molal Properties, this edition uses the more popular Gibbs Energy and Partial Molar Properties,) changes in symbols (the first edition used the Lewis-Randal fugacity rule and the popular symbol for the same quantity, this edition only uses the popular notation,) and new problems have been added to the text. Finally the second edition includes an appendix about the Bridgman table and its use.
<p>Preface xiii</p> <p>About the Author xv</p> <p>Nomenclature xvii</p> <p><b>1 Introduction to Equilibrium 1</b></p> <p>1.1 Why Study Equilibrium? 1</p> <p>1.2 Stability and Equilibrium 4</p> <p>1.3 Time Scales and the Approach to Equilibrium 5</p> <p>1.4 Looking Ahead, Gibbs Energy 5</p> <p>1.5 Units, Conversion Factors, and Notation 6</p> <p>1.6 Reality and Equations 8</p> <p>1.7 Phases and Phase Diagrams 8</p> <p>1.8 The Plan of this Book 10</p> <p>1.9 Summary 10</p> <p>References 11</p> <p><b>2 Basic Thermodynamics 13</b></p> <p>2.1 Conservation and Accounting 13</p> <p>2.2 Conservation of Mass 14</p> <p>2.3 Conservation of Energy; the First Law of Thermodynamics 15</p> <p>2.4 The Second Law of Thermodynamics 17</p> <p>2.4.1 Reversibility 17</p> <p>2.4.2 Entropy 18</p> <p>2.5 Convenience Properties 19</p> <p>2.6 Using the First and Second Laws 19</p> <p>2.7 Datums and Reference States 21</p> <p>2.8 Measurable and Immeasurable Properties 22</p> <p>2.9 Work and Heat 22</p> <p>2.10 The Property Equation 23</p> <p>2.11 Equations of State (EOS) 24</p> <p>2.11.1 EOSs Based on Theory 25</p> <p>2.11.2 EOSs Based on Pure Data Fitting 25</p> <p>2.12 Corresponding States 26</p> <p>2.13 Departure Functions 28</p> <p>2.14 The Properties of Mixtures 28</p> <p>2.15 The Combined First and Second Law Statement; Reversible Work 29</p> <p>2.16 Summary 31</p> <p>References 33</p> <p><b>3 The Simplest Phase Equilibrium Examples and Some Simple Estimating Rules 35</b></p> <p>3.1 Some General Statements About Equilibrium 35</p> <p>3.2 The Simplest Example of Phase Equilibrium 37</p> <p>3.2.1 A Digression, the Distinction between Vapor and Gas 37</p> <p>3.2.2 Back to the Simplest Equilibrium 37</p> <p>3.3 The Next Level of Complexity in Phase Equilibrium 37</p> <p>3.4 Some Simple Estimating Rules: Raoult’s and Henry’s “Laws” 39</p> <p>3.5 The General Two-Phase Equilibrium Calculation 43</p> <p>3.6 Some Simple Applications of Raoult’s and Henry’s Laws 43</p> <p>3.7 The Uses and Limits of Raoult’s and Henry’s Laws 46</p> <p>3.8 Summary 46</p> <p>References 48</p> <p><b>4 Minimization of Gibbs Energy 49</b></p> <p>4.1 The Fundamental Thermodynamic Criterion of Phase and Chemical Equilibrium 49</p> <p>4.2 The Criterion of Equilibrium Applied to Two Nonreacting Equilibrium Phases 51</p> <p>4.3 The Criterion of Equilibrium Applied to Chemical Reactions 53</p> <p>4.4 Simple Gibbs Energy Diagrams 54</p> <p>4.4.1 Comparison with Enthalpy and Entropy 55</p> <p>4.4.2 Gibbs Energy Diagrams for Pressure-Driven Phase Changes 55</p> <p>4.4.3 Gibbs Energy Diagrams for Chemical Reactions 57</p> <p>4.5 Le Chatelier’s Principle 58</p> <p>4.6 Summary 58</p> <p>References 60</p> <p><b>5 Vapor Pressure, the Clapeyron Equation, and Single Pure Chemical Species Phase Equilibrium 61</b></p> <p>5.1 Measurement of Vapor Pressure 61</p> <p>5.2 Reporting Vapor-Pressure Data 61</p> <p>5.2.1 Normal Boiling Point (NBP) 61</p> <p>5.3 The Clapeyron Equation 62</p> <p>5.4 The Clausius–Clapeyron Equation 63</p> <p>5.5 The Accentric Factor 64</p> <p>5.6 The Antoine Equation and Other Data-Fitting Equations 66</p> <p>5.6.1 Choosing a Vapor-Pressure Equation 67</p> <p>5.7 Applying the Clapeyron Equation to Other Kinds of Equilibrium 67</p> <p>5.8 Extrapolating Vapor-Pressure Curves 68</p> <p>5.9 Vapor Pressure of Solids 69</p> <p>5.10 Vapor Pressures of Mixtures 69</p> <p>5.11 Summary 69</p> <p>References 72</p> <p><b>6 Partial Molar Properties 73</b></p> <p>6.1 Partial Molar Properties 73</p> <p>6.2 The Partial Molar Equation 74</p> <p>6.3 Tangent Slopes 74</p> <p>6.4 Tangent Intercepts 77</p> <p>6.5 The Two Equations for Partial Molar Properties 78</p> <p>6.6 Using the Idea of Tangent Intercepts 79</p> <p>6.7 Partial Mass Properties 80</p> <p>6.8 Heats of Mixing and Partial Molar Enthalpies 80</p> <p>6.8.1 Differential Heat of Mixing 80</p> <p>6.8.2 Integral Heat of Mixing 81</p> <p>6.9 The Gibbs–Duhem Equation and the Counterintuitive Behavior of the Chemical Potential 82</p> <p>6.10 Summary 84</p> <p>References 87</p> <p><b>7 Fugacity, Ideal Solutions, Activity, Activity Coefficient 89</b></p> <p>7.1 Why Fugacity? 89</p> <p>7.2 Fugacity Defined 89</p> <p>7.3 The Use of the Fugacity 90</p> <p>7.4 Pure Substance Fugacities 90</p> <p>7.4.1 The Fugacity of Pure Gases 91</p> <p>7.4.2 The Fugacity of Pure Liquids and Solids 94</p> <p>7.5 Fugacities of Species in Mixtures 95</p> <p>7.6 Mixtures of Ideal Gases 95</p> <p>7.7 Why Ideal Solutions? 95</p> <p>7.8 Ideal Solutions Defined 96</p> <p>7.8.1 The Consequences of the Ideal Solution Definition 96</p> <p>7.9 Why Activity and Activity Coefficients? 98</p> <p>7.10 Activity and Activity Coefficients Defined 98</p> <p>7.11 Fugacity Coefficient for Pure Gases and Gas Mixtures 100</p> <p>7.12 Estimating Fugacities of Individual Species in Gas Mixtures 100</p> <p>7.12.1 Fugacities from Gas <i>PvT</i> Data 100</p> <p>7.12.2 Fugacities from an EOS for Gas Mixtures 102</p> <p>7.12.3 The Lewis and Randall (L-R) Fugacity Rule 102</p> <p>7.12.4 Other Mixing Rules 103</p> <p>7.13 Liquid Fugacities from Vapor-Liquid Equilibrium 104</p> <p>7.14 Summary 104</p> <p>References 105</p> <p><b>8 Vapor–Liquid Equilibrium (VLE) at Low Pressures 107</b></p> <p>8.1 Measurement of VLE 107</p> <p>8.2 Presenting Experimental VLE Data 110</p> <p>8.3 The Mathematical Treatment of Low-Pressure VLE Data 110</p> <p>8.3.1 Raoult’s Law Again 111</p> <p>8.4 The Four Most Common Types of Low-Pressure VLE 112</p> <p>8.4.1 Ideal Solution Behavior (Type I) 114</p> <p>8.4.2 Positive Deviations from Ideal Solution Behavior (Type II) 114</p> <p>8.4.3 Negative Deviations from Ideal Solution Behavior (Type III) 115</p> <p>8.4.4 Azeotropes 117</p> <p>8.4.5 Two-Liquid Phase or Heteroazeotropes (Type IV) 118</p> <p>8.4.6 Zero Solubility and Steam Distillation 120</p> <p>8.4.7 Distillation of the Four Types of Behavior 121</p> <p>8.5 Gas–Liquid Equilibrium, Henry’s Law Again 122</p> <p>8.6 The Effect of Modest Pressures on VLE 122</p> <p>8.6.1 Liquids 123</p> <p>8.6.2 Gases, the L-R Rule 123</p> <p>8.7 Standard States Again 124</p> <p>8.8 Low-Pressure VLE Calculations 125</p> <p>8.8.1 Bubble-Point Calculations 127</p> <p>8.8.1.1 Temperature-Specified Bubble Point 127</p> <p>8.8.1.2 Pressure-Specified Bubble Point 128</p> <p>8.8.2 Dew-Point Calculations 129</p> <p>8.8.2.1 Temperature-Specified Dew Point 129</p> <p>8.8.2.2 Pressure-Specified Dew Point 129</p> <p>8.8.3 Isothermal Flashes (T- and P-Specified Flashes) 130</p> <p>8.8.4 Adiabatic Flashes 131</p> <p>8.9 Traditional <i>K</i>-Factor Methods 132</p> <p>8.10 More Uses for Raoult’s Law 132</p> <p>8.10.1 Nonvolatile Solutes, Boiling-Point Elevation 132</p> <p>8.10.2 Freezing-Point Depression 135</p> <p>8.10.3 Colligative Properties of Solutions 136</p> <p>8.11 Summary 136</p> <p>References 143</p> <p><b>9 Correlating and Predicting Nonideal VLE 145</b></p> <p>9.1 The Most Common Observations of Liquid-Phase Activity Coefficients 145</p> <p>9.1.1 Why Nonideal Behavior? 145</p> <p>9.1.2 The Shapes of Ln, G X Curves 146</p> <p>9.2 Limits on Activity Coefficient Correlations, the Gibbs–Duhem Equation 147</p> <p>9.3 Excess Gibbs Energy and Activity Coefficient Equations 148</p> <p>9.4 Activity Coefficients at Infinite Dilution 150</p> <p>9.5 Effects of Pressure and Temperature on Liquid-Phase Activity Coefficients 151</p> <p>9.5.1 Effect of Pressure Changes on Liquid-Phase Activity Coefficients 151</p> <p>9.5.2 Effect of Temperature Changes on Liquid-Phase Activity Coefficients 152</p> <p>9.6 Ternary and Multispecies VLE 153</p> <p>9.6.1 Liquid-Phase Activity Coefficients for Ternary Mixtures 154</p> <p>9.7 Vapor-Phase Nonideality 155</p> <p>9.8 VLE from EOS 158</p> <p>9.9 Solubility Parameter 158</p> <p>9.10 The Solubility of Gases in Liquids, Henry’s Law Again 160</p> <p>9.11 Summary 163</p> <p>References 167</p> <p><b>10 Vapor–Liquid Equilibrium (VLE) at High Pressures 169</b></p> <p>10.1 Critical Phenomena of Pure Species 169</p> <p>10.2 Critical Phenomena of Mixtures 170</p> <p>10.3 Estimating High-Pressure VLE 174</p> <p>10.3.1 Empirical K-Value Correlations 175</p> <p>10.3.2 Estimation Methods for Each Phase Separately, Not Based on Raoult’s Law 175</p> <p>10.3.3 Estimation Methods Based on Cubic EOSs 176</p> <p>10.4 Computer Solutions 178</p> <p>10.5 Summary 178</p> <p>References 179</p> <p><b>11 Liquid–Liquid, Liquid–Solid, and Gas–Solid Equilibrium 181</b></p> <p>11.1 Liquid–Liquid Equilibrium (LLE) 181</p> <p>11.2 The Experimental Determination of LLE 181</p> <p>11.2.1 Reporting and Presenting LLE Data 182</p> <p>11.2.2 Practically Insoluble Liquid Pairs at 25<sup>°</sup>C 183</p> <p>11.2.3 Partially Soluble Liquid Pairs at 25<sup>°</sup>C 183</p> <p>11.2.4 Miscible Liquid Pairs at 25<sup>°</sup>C 183</p> <p>11.2.5 Ternary LLE at 25<sup>°</sup>C 184</p> <p>11.2.6 LLE at Temperatures Other Than 25<sup>°</sup>C 186</p> <p>11.3 The Elementary Theory of LLE 187</p> <p>11.4 The Effect of Pressure on LLE 190</p> <p>11.5 Effect of Temperature on LLE 191</p> <p>11.6 Distribution Coefficients 194</p> <p>11.7 Liquid–Solid Equilibrium (LSE) 195</p> <p>11.7.1 One-Species LSE 195</p> <p>11.7.2 The Experimental Determination of LSE 195</p> <p>11.7.3 Presenting LSE Data 195</p> <p>11.7.4 Eutectics 197</p> <p>11.7.5 Gas Hydrates (Clathrates) 199</p> <p>11.8 The Elementary Thermodynamics of LSE 200</p> <p>11.9 Gas–Solid Equilibrium (GSE) at Low Pressures 202</p> <p>11.10 GSE at High Pressures 203</p> <p>11.11 Gas–Solid Adsorption, Vapor–Solid Adsorption 204</p> <p>11.11.1 Langmuir’s Adsorption Theory 205</p> <p>11.11.2 Vapor-solid Adsorption, BET Theory 207</p> <p>11.11.3 Adsorption from Mixtures 208</p> <p>11.11.4 Heat of Adsorption 209</p> <p>11.11.5 Hysteresis 210</p> <p>11.12 Summary 211</p> <p>References 215</p> <p><b>12 Chemical Equilibrium 217</b></p> <p>12.1 Introduction to Chemical Reactions and Chemical Equilibrium 217</p> <p>12.2 Formal Description of Chemical Reactions 217</p> <p>12.3 Minimizing Gibbs Energy 218</p> <p>12.4 Reaction Rates, Energy Barriers, Catalysis, and Equilibrium 219</p> <p>12.5 The Basic Thermodynamics of Chemical Reactions and Its Convenient Formulations 220</p> <p>12.5.1 The Law of Mass Action and Equilibrium Constants 222</p> <p>12.6 Calculating Equilibrium Constants from Gibbs Energy Tables and then Using Equilibrium Constants to Calculate Equilibrium Concentrations 223</p> <p>12.6.1 Change of Reactant Concentration, Reaction Coordinate 224</p> <p>12.6.2 Reversible and Irreversible Reactions 227</p> <p>12.7 More on Standard States 227</p> <p>12.8 The Effect of Temperature on Chemical Reaction Equilibrium 229</p> <p>12.9 The Effect of Pressure on Chemical Reaction Equilibrium 234</p> <p>12.9.1 Ideal Solution of Ideal Gases 235</p> <p>12.9.2 Nonideal Solution, Nonideal Gases 236</p> <p>12.9.3 Liquids and Solids 237</p> <p>12.10 The Effect of Nonideal Solution Behavior 238</p> <p>12.10.1 Liquid-Phase Nonideality 238</p> <p>12.11 Other Forms of K 238</p> <p>12.12 Summary 239</p> <p>References 242</p> <p><b>13 Equilibrium in Complex Chemical Reactions 243</b></p> <p>13.1 Reactions Involving Ions 243</p> <p>13.2 Multiple Reactions 244</p> <p>13.2.1 Sequential Reactions 244</p> <p>13.2.2 Simultaneous Reactions 245</p> <p>13.2.3 The Charge Balance Calculation Method and Buffers 246</p> <p>13.3 Reactions with More Than One Phase 249</p> <p>13.3.1 Solubility Product 249</p> <p>13.3.2 Gas-Liquid Reactions 249</p> <p>13.4 Electrochemical Reactions 252</p> <p>13.5 Chemical and Physical Equilibrium in Two Phases 255</p> <p>13.5.1 Dimerization (Association) 255</p> <p>13.6 Summary 257</p> <p>References 262</p> <p><b>14 Equilibrium with Gravity or Centrifugal Force, Osmotic Equilibrium, Equilibrium with Surface Tension 265</b></p> <p>14.1 Equilibrium with Other Forms of Energy 265</p> <p>14.2 Equilibrium in the Presence of Gravity 266</p> <p>14.2.1 Centrifuges 268</p> <p>14.3 Semipermeable Membranes 269</p> <p>14.3.1 Osmotic Pressure 270</p> <p>14.4 Small is Interesting! Equilibrium with Surface Tension 271</p> <p>14.4.1 Bubbles, Drops and Nucleation 271</p> <p>14.4.2 Capillary Condensation 275</p> <p>14.5 Summary 275</p> <p>References 278</p> <p><b>15 The Phase Rule 279</b></p> <p>15.1 How Many Phases Can Coexist in a Given Equilibrium Situation? 279</p> <p>15.2 What Does the Phase Rule Tell Us? What Does It Not Tell Us? 280</p> <p>15.3 What is a Phase? 280</p> <p>15.4 The Phase Rule is Simply Counting Variables 281</p> <p>15.5 More On Components 282</p> <p>15.5.1 A Formal Way to Find the Number of Independent Equations 285</p> <p>15.6 The Phase Rule for One- and Two-Component Systems 285</p> <p>15.7 Harder Phase Rule Problems 288</p> <p>15.8 Summary 288</p> <p>References 291</p> <p><b>16 Equilibrium in Biochemical Reactions 293</b></p> <p>16.1 An Example, the Production of Ethanol from Sugar 293</p> <p>16.2 Organic and Biochemical Reactions 293</p> <p>16.3 Two More Sweet Examples 294</p> <p>16.4 Thermochemical Data for Biochemical Reactions 295</p> <p>16.5 Thermodynamic Equilibrium in Large Scale Biochemistry 296</p> <p>16.6 Translating between Biochemical and Chemical Engineering Equilibrium Expressions 296</p> <p>16.6.1 Chemical and Biochemical Equations 297</p> <p>16.6.2 Equilibrium Constants 297</p> <p>16.6.3 pH and Buffers 298</p> <p>16.6.4 Ionic Strength 298</p> <p>16.7 Equilibrium in Biochemical Separations 298</p> <p>16.8 Summary 299</p> <p>References 300</p> <p><b>Appendix A Useful Tables and Charts 303</b></p> <p>A.1 Useful Property Data for Corresponding States Estimates 303</p> <p>A.2 Vapor-Pressure Equation Constants 305</p> <p>A.3 Henry’s Law Constants 306</p> <p>A.4 Compressibility Factor Chart (<i>z</i> Chart) 307</p> <p>A.5 Fugacity Coefficient Charts 307</p> <p>A.6 Azeotropes 308</p> <p>A.7 Van Laar Equation Constants 312</p> <p>A.8 Enthalpies and Gibbs Energies of Formation from the Elements in the Standard States, at T = 298.15 K = 25<sup>°</sup>C and P = 1.00 bar 313</p> <p>A.9 Heat Capacities of Gases in the Ideal Gas State 317</p> <p><b>Appendix B Equilibrium with other Restraints, Other Approaches to Equilibrium 319</b></p> <p><b>Appendix C The Mathematics of Fugacity, Ideal Solutions, Activity and Activity Coefficients 323</b></p> <p>C.1 The Fugacity of Pure Substances 323</p> <p>C.2 Fugacities of Components of Mixtures 324</p> <p>C.3 The Consequences of the Ideal Solution Definition 326</p> <p>C.4 The Mathematics of Activity Coefficients 326</p> <p><b>Appendix D Equations of State for Liquids and Solids Well Below their Critical Temperatures 329</b></p> <p>D.1 The Taylor Series EOS and Its Short Form 329</p> <p>D.2 Effect of Temperature on Density 330</p> <p>D.3 Effect of Pressure on Density 331</p> <p>D.4 Summary 332</p> <p>References 333</p> <p><b>Appendix E Gibbs Energy of Formation Values 335</b></p> <p>E.1 Values “From the Elements” 335</p> <p>E.2 Changes in Enthalpy, Entropy, and Gibbs Energy 335</p> <p>E.2.1 Enthalpy Changes 335</p> <p>E.2.2 Entropy Changes 336</p> <p>E.3 Ions 337</p> <p>E.4 Presenting these Data 337</p> <p>References 337</p> <p><b>Appendix F Calculation of Fugacities from Pressure-Explicit EOSs 339</b></p> <p>F.1 Pressure-Explicit and Volume-Explicit EOSs 339</p> <p>F.2 <i>f/P</i> of Pure Species Based on Pressure-Explicit EOSs 339</p> <p>F.3 Cubic Equations of State 340</p> <p>F.4 <i>f<sub>i</sub> </i>/<i>Py<sub>i</sub></i> for Individual Species in Mixtures Based on Pressure-Explicit EOSs 342</p> <p>F.5 Mixing Rules for Cubic EOSs 343</p> <p>F.6 VLE Calculations with a Cubic EOS 344</p> <p>F.7 Summary 345</p> <p>References 346</p> <p><b>Appendix G Thermodynamic Property Derivatives and the Bridgman Table 347</b></p> <p>References 350</p> <p><b>Appendix H Answers to Selected Problems 351</b></p> <p>Index 353</p>
<p><b>NOEL de NEVERS</b>, PhD, followed five years of working for Chevron with thirty-seven years as a Professor in the Chemical Engineering Department of the University of Utah. His textbooks (and research papers) are in fluid mechanics, thermodynamics, and air pollution control engineering. He regularly consults as an expert on explosions, fires, and toxic exposures.<br />In addition to technical work, he has three "de Nevers's Laws" in a Murphy's Laws compilation and won the title "Poet Laureate of Jell-O Salad" in a Salt Lake City competition, with three limericks and a quatrain. He has climbed the Grand Teton, Mt. Rainier, Mt. Whitney, Kala Pattar, and Mt. Kilimanjaro, and is the official discoverer of Private Arch in Arches National Park.</p>
<p><b>The most readable, understandable, and intuitively satisfying book on the thermodynamics of physical and chemical equilibrium</b></p> <p>Physical and chemical equilibrium and the calculation of the thermodynamic properties of mixtures is a topic of great interest—and importance—to engineers, but it is not always easy to master. Using the simplest mathematics possible, and providing extensive discussion of the theory and practice of equilibrium calculations, the Second Edition of <i>Physical and Chemical Equilibrium for Chemical Engineers</i> provides rigorous but readable, understandable, and intuitively satisfying coverage, showing the reader how to solve common and advanced problems by hand, and by using spreadsheets, and then explains how such problems are solved in computer process design programs.</p> <p>Fully revised and expanded, this new edition explores physical and chemical equilibrium in detail, including a new appendix on the Bridgman Table and its uses, a new chapter on Equilibrium in Biochemical Reactions, and new sections on minimum work, eutectics and hydrates, adsorption, buffers, and the charge-balance method of computing them. Its appendix on Calculation of Fugacities from Pressure-Explicit EOSs clearly shows how modern computer equilibrium programs actually do their work using the SRK and related equations.</p> <p>Providing a concise and highly accessible guide to the thermodynamic properties of a wide range of mixtures, and how these properties control physical and chemical equilibrium, this book is of interest not only to chemical, but also environmental and civil engineers. Large numbers of problems and examples—worked in detail—help the reader integrate the material in this book into his/her working technical toolkit. <i>Physical and Chemical Equilibrium for Chemical Engineers</i> is a must-have for anyone wanting to understand and then apply this important branch of thermodynamics.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €